A Study on Fracture Toughness of 9Al2O32B·2O3/AC4CH Alloy Composites

2005 ◽  
Vol 297-300 ◽  
pp. 2459-2464
Author(s):  
Won Jo Park ◽  
Chu Yong Kim ◽  
Sun Chul Huh ◽  
Kwang Young Lee

An aluminum borate whisker (Al18B4O33w) was recognized as an attractive reinforcement for the aluminum alloy, It is good strength, high wear resistance, good thermal stability and low cost, comparable with those of other whiskers such as SiC and Al2O3. In general, aluminum borate whisker reinforced AC4CH alloy composites have been produced by squeeze casting process, which is capable of promoting the higher specific mechanical properties. α+Al18B4O33w/AC4CH (α: SiO2, Al2O3, TiO2sol) composites were fabricated by squeezecasting method in which the molten aluminum infiltrated into the whisker preform. The primary objective of this study was to establish the influence of the fracture toughness of α+Al18B4O33w reinforced composite by different containing inorganic binder. In addition, the fracture mechanism was evaluated through the scanning electron micrographs. As results, fracture toughness the composite containing TiO2 sol was shows plane about 9.28Mpa-m0.5. TiO2 inorganic binder can enhance fracture toughness of the Al18B4O33w reinforced composite. In order to obtain Al18B4O33w reinforced aluminum composites to have good fracture toughness use of TiO2 inorganic binder is recommend.

Alloy Digest ◽  
1983 ◽  
Vol 32 (5) ◽  

Abstract AISI 1030 is a plain carbon steel containing nominally 0.30% carbon. It is used in the hot-rolled, normalized, oil-quenched-and-tempered or water-quenched-and-tempered conditions for general-purpose engineering and construction. It provides medium strength and toughness at low cost. Among its many uses are axles, bolts, gears and building sections. All data are on a single heat of fine-grain steel. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-94. Producer or source: Carbon and alloy steel mills.


Alloy Digest ◽  
1994 ◽  
Vol 43 (10) ◽  

Abstract Duralcan F3S.xxS is a heat treatable aluminum alloy-matrix gravity composite. The base alloy is similar to Aluminum 359 (Alloy Digest Al-188, July 1969); the discontinuously reinforced composite is silicon carbide. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness and fatigue. It also includes information on high temperature performance. Filing Code: AL-329. Producer or source: Alcan Aluminum Corporation.


Alloy Digest ◽  
1971 ◽  
Vol 20 (6) ◽  

Abstract AISI 1040 is a medium-carbon steel used in the hot-rolled, normalized, oil quenched and tempered or water quenched and tempered condition for general purpose engineering and construction. It provides medium strength and toughness at low cost. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-41. Producer or source: Carbon and alloy steel mills.


Alloy Digest ◽  
1979 ◽  
Vol 28 (4) ◽  

Abstract SAE 1037 is a carbon steel that provides medium strength and medium toughness at low cost. It is used in the hot-rolled, normalized, oil-quenched-and-tempered and water-quenched-and-tempered conditions. This medium-carbon steel is used for construction and for general-purpose engineering. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-76. Producer or source: Carbon steel mills.


Alloy Digest ◽  
1977 ◽  
Vol 26 (2) ◽  

Abstract SAF 1039 steel can be used in the hot-rolled, normalized, oil-quenched-and-tempered or water-quenched-and-tempered condition for general-purpose construction and engineering. Its manganese content is a little higher than some of the other standard carbon steels with comparable carbon levels; this gives it slightly higher hardenability and hardness. It provides medium strength and toughness at low cost. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-66. Producer or source: Carbon steel mills.


Alloy Digest ◽  
1997 ◽  
Vol 46 (5) ◽  

Abstract Duracorr is low-cost, utilitarian 11% Cr stainless steel with more corrosion resistance and life-cycle cost advantages than weathering steels. The steel may be used where a combination of abrasion and corrosion resistance is required. This datasheet provides information on composition, physical properties, microstructure, hardness, tensile properties, and bend strength as well as fracture toughness. It also includes information on corrosion resistance as well as joining. Filing Code: SS-680. Producer or source: Lukens Steel Company.


Alloy Digest ◽  
2000 ◽  
Vol 49 (1) ◽  

Abstract Finkl WF-XTRA has high wear resistance while retaining moderate fracture toughness. The alloy is recommended for larger die blocks. The optimum diameter for hardenability is 838 mm (33 in.). It is appropriate for use in high-production hammers where die temperatures may be above average or in presses with moderately high operating temperatures. This datasheet provides information on composition, microstructure, hardness, and tensile properties as well as fracture toughness. It also includes information on heat treating, machining, and joining. Filing Code: TS-570. Producer or source: A. Finkl & Sons Company.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 140
Author(s):  
Lichen Liu ◽  
Ziping Cao ◽  
Min Chen ◽  
Jun Jiang

This paper reports the fabrication and characterization of (Bi0.48Sb1.52)Te3 thick films using a tape casting process on glass substrates. A slurry of thermoelectric (Bi0.48Sb1.52)Te3 was developed and cured thick films were annealed in a vacuum chamber at 500–600 °C. The microstructure of these films was analyzed, and the Seebeck coefficient and electric conductivity were tested. It was found that the subsequent annealing process must be carefully designed to achieve good thermoelectric properties of these samples. Conductive films were obtained after annealing and led to acceptable thermoelectric performance. While the properties of these initial materials are not at the level of bulk materials, this work demonstrates that the low-cost tape casting technology is promising for fabricating thermoelectric modules for energy conversion.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2509
Author(s):  
Seyed Mohammad Javad Razavi ◽  
Rasoul Esmaeely Neisiany ◽  
Moe Razavi ◽  
Afsaneh Fakhar ◽  
Vigneshwaran Shanmugam ◽  
...  

Functionalized polyacrylonitrile (PAN) nanofibers were used in the present investigation to enhance the fracture behavior of carbon epoxy composite in order to prevent delamination if any crack propagates in the resin rich area. The main intent of this investigation was to analyze the efficiency of PAN nanofiber as a reinforcing agent for the carbon fiber-based epoxy structural composite. The composites were fabricated with stacked unidirectional carbon fibers and the PAN powder was functionalized with glycidyl methacrylate (GMA) and then used as reinforcement. The fabricated composites’ fracture behavior was analyzed through a double cantilever beam test and the energy release rate of the composites was investigated. The neat PAN and functionalized PAN-reinforced samples had an 18% and a 50% increase in fracture energy, respectively, compared to the control composite. In addition, the samples reinforced with functionalized PAN nanofibers had 27% higher interlaminar strength compared to neat PAN-reinforced composite, implying more efficient stress transformation as well as stress distribution from the matrix phase (resin-rich area) to the reinforcement phase (carbon/phase) of the composites. The enhancement of fracture toughness provides an opportunity to alleviate the prevalent issues in laminated composites for structural operations and facilitate their adoption in industries for critical applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Qiangying Yi ◽  
Gleb B. Sukhorokov ◽  
Jin Ma ◽  
Xiaobo Yang ◽  
Zhongwei Gu

Phase change materials absorb the thermal energy when changing their phases (e.g., solid-to-liquid) at constant temperatures to achieve the latent heat storage. The major drawbacks such as limited thermal conductivity and leakage prevent the PCMs from wide application in desired areas. In this work, an environmentally friendly and low cost approach, layer-by-layer (LbL) assembly technique, was applied to build up ultrathin shells to encapsulate the PCMs and therefore to regulate their changes in volume when the phase change occurs. Generally, the oppositely charged strong polyelectrolytes Poly(diallyldimethylammonium chloride) (PDADMAC) and Poly(4-styrenesulfonic acid) sodium salt (PSS) were employed to fabricate multilayer shells on emulsified octadecane droplets using either bovine serum albumin (BSA) or sodium dodecyl sulfate (SDS) as surfactant. Specifically, using BSA as the surfactant, polyelectrolyte encapsulated octadecane spheres in size of ∼500 nm were obtained, with good shell integrity, high octadecane content (91.3% by mass), and good thermal stability after cycles of thermal treatments.


Sign in / Sign up

Export Citation Format

Share Document