Numerical and Experimental Study on Railway Impact Energy Absorption Using Tube External Inversion Mechanism at Real Scale

2006 ◽  
Vol 306-308 ◽  
pp. 315-320 ◽  
Author(s):  
Ign Wiratmaja Puja ◽  
A. Khairullah ◽  
Muhammad Agus Kariem ◽  
A.H. Saputro

Impact energy and deceleration at a certain time are the most influenced factor to passenger’s safety when collision between railway vehicles occurred. In this paper, forced external inversion mechanism is considered as impact energy absorber. This mechanism is selected due to its constant inversion load along uniform tube [5] and the impact force is reduced because of its inertia effect [7]. Material used as energy absorber is mild steel. Numerical analysis using finite element method is utilized to study the energy absorption capacity and deceleration characteristic of tube external inversion mechanism for complex transient problem of collision. The real scale experimental study is used to validate the numerical analysis by crashing a moving vehicle to static train series where the impact energy absorber module using external inversion mechanism is attached in the tip of static train series. Characteristic that consider in numerical and experimental study are deformation and contact force. The deformation differences between numerical and experimental study are under 9%. Whereas for contact force, the experimental result of contact force disposed under 8% of numerical result for velocity of moving train at 10 and 15 km/h.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Bin Gong

The energy absorber is used to simulate the reaction of a working piece subjected to a vibration stimulus, by which the consistent and repeatable reactions to the tool’s vibration inputs could be achieved. According to the proposed coupling simulation model by using commercial software RecurDyn and EDEM, the energy dissipated by the energy absorber and the contact force between the drill rod and the piston are evaluated under different load conditions such as the impact frequency and impact stroke. Moreover, the effects of the ball diameter, ball column height, and diameter on the energy absorption characteristics are also studied. The results show that the impact frequency and stroke influence the energy absorber by changing the impact force; the energy absorption is more obvious under higher impact frequency and long impact stroke. The filling ball diameter influences the energy reflectivity by changing the porosity, which is negatively correlated to the energy reflectivity, and a 6 mm filling ball diameter is suggested. The energy reflectivity is inversely proportional to the ball column height and diameter, and the suggested ball column diameter and height are 160 mm and 600 mm, respectively, with energy reflectivity of 0.045. Even when the increase in impact frequency and stroke will increase the contact force, the dynamic load factor decreases. The contact force and dynamic load factor are inversely proportional to the ball column height, but they are not influenced by the ball diameter and the ball column diameter.


2015 ◽  
Vol 30 (6) ◽  
pp. 12-17
Author(s):  
Woo Chae Hwang ◽  
Cheon Seok Cha ◽  
Yong Jun Yang ◽  
Jong An Jung ◽  
In Young Yang

Author(s):  
Kuahai Yu ◽  
Danesh Tafti

Sand ingestion and deposition in gas turbine engine components can lead to several operational hazards. This paper discusses a physics based model for modeling the impact and deposition of sand particles. The collision model divides the impact process into three stages, the elastic stage, the elastic-plastic stage, and full plastic stage. The recovery stage is assumed to be fully elastic. The contact force, contact radius and work of contact force are conformed to the Hertzian theory, using “Young’s modulus similarity” rule to predict the recovery displacement. The adhesion loss in the recovery stage is considered using Dunn’s model, which describes the adhesion force as an idealized line force with the contact radius. The validation case of steel spherical particle impact on a glass surface with the maximum Stokes number of 10000, shows that the adhesion model with elastoplastic impact model describes the experimental result well. When the Stokes number is less than 12, the particle deposits on the surface. Sand properties are characterized by size and temperature dependencies. Model predictions for particle sizes ranging from 0.5 to 50 micron, impact velocities up to 80 m/s, and temperatures above 1300 K are given and discussed. It is shown that both size and temperature have an effect on the deposition characteristics.


2016 ◽  
Vol 838 ◽  
pp. 29-35
Author(s):  
Michał Landowski ◽  
Krystyna Imielińska

Flexural strength and low velocity impact properties were investigated in terms of possibile improvements due to epoxy matrix modification by SiO2 nanoparticles (1%, 2%, 3%, 5%, 7%wt.) in glass/epoxy laminates formed using hand lay-up method. The matrix resin was Hexion L285 (DGEBA) with Nanopox A410 - SiO2 (20 nm) nanoparticle suspension in the base epoxy resin (DGEBA) supplied by Evonic. Modification of epoxy matrix by variable concentrations of nanoSiO2 does not offer significant improvements in the flexural strength σg, Young’s modulus E and interlaminar shear strength for 1% 3% and 5% nanoSiO2 and for 7% a slight drop (up to ca. 15-20%) was found. Low energy (1J) impact resistance of nanocomposites represented by peak load in dynamic impact characteristics was not changed for nanocompoosites compared to the unmodified material. However at higher impact energy (3J) nanoparticles appear to slightly improve the impact energy absorption for 3% and 5%. The absence or minor improvements in the mechanical behaviour of nanocomposites is due to the failure mechanisms associated with hand layup fabrication technique: (i.e. rapid crack propagation across the extensive resin pockets and numerous pores and voids) which dominate the nanoparticle-dependent crack energy absorption mechanisms (microvoids formation and deformation).


2011 ◽  
Vol 99-100 ◽  
pp. 1023-1026 ◽  
Author(s):  
Lu Yang ◽  
Shi Min Li ◽  
Dai Heng Chen ◽  
Zhi Min Wu

This paper bases on the prototype of the actual shed tunnel structure, study on contact force, displacement, damage, energy of shed tunnel under impact of rock-fall. By ABAQUS finite element software to simulate the process of roll-fall impact knowable: Rock-fall at different speeds and incident angle shocks on shed tunnel has great influence to concrete protective structure of contact force and displacement; Concrete protective structure damage the worst hit area of occurred with roll-fall contact area, the second is inclined leg column top and in connection with the pillars of the beam damage is also very serious, In practical projects first should pay attention to strengthen the intensity of the pillars with beam joints and prevent damage; From the angle of energy we can see that shed tunnel is mainly through the concrete protective structure to absorb and consumption impact energy, soil cushion absorption and consumption impact energy is very limited, to alleviate the impact of concrete protective layer rolling damage, and suggestions in shed tunnel bearing place additional energy shock absorber to increases protection structure system soft degrees under the condition of minimize the shed tunnel weight, achieve the purpose of decrease shock energy.


2020 ◽  
Vol 54 (28) ◽  
pp. 4387-4395
Author(s):  
Sanchi Arora ◽  
Abhijit Majumdar ◽  
Bhupendra Singh Butola

The beneficial effect of STF impregnation in enhancing the impact resistance of high-performance fabrics has been extensively reported in the literature. However, this research work reports that fabric structure has a decisive role in moderating the effectiveness of STF impregnation in terms of impact energy absorption. Plain woven fabrics having sett varying from 25 × 25 inch−1 to 55 × 55 inch−1 were impregnated with STF at two different padding pressures to obtain different add-ons. The impact energy absorption by STF impregnated loosely woven fabrics was found to be higher than that of their neat counterparts for both levels of add-on, while opposite trend was observed in case of tightly woven fabrics. Further, comparison of tightly woven plain, 2/2 twill, 3/1 twill and 2 × 2 matt fabrics revealed beneficial effect of STF impregnation, except for the plain woven fabric, establishing that there exists a fabric structure-STF impregnation interplay that tunes the impact resistance of woven fabrics.


2014 ◽  
Vol 67 (3) ◽  
Author(s):  
M. S. Othman ◽  
Z. Ahmad

This paper treats the crash analysis and energy absorption response of Rain Forest Vehicle (RFV) subjected to frontal impact scenario namely impacting rigid wall and column. Dynamic computer simulation techniques validated by experimental testing are used to carry out a crash analysis of such vehicle. The study aims at quantifying the energy absorption capability of frontal section of RFV under impact loading, for variations in the load transfer paths and geometry of the crashworthy components. It is evident that the proposed design of the RFV frontal section are desirable as primary impact energy mitigation due to its ability to withstand and absorb impact loads effectively. Furthermore, it is found that the impact energy transmitted to the survival room may feasibly be minimized in these two impact events. The primary outcome of this study is design recommendation for enhancing the level of safety of the off-road vehicle where impact loading is expected.   


2014 ◽  
Vol 69 (3) ◽  
Author(s):  
M. S. Othman ◽  
Z. Ahmad

This paper treats the crash analysis and energy absorption response of Rain Forest Vehicle (RFV) subjected to frontal impact scenario namely impacting rigid wall and column. Dynamic computer simulation techniques validated by experimental testing are used to carry out a crash analysis of such vehicle. The study aims at quantifying the energy absorption capability of frontal section of RFV under impact loading, for variations in the load transfer paths and geometry of the crashworthy components. It is evident that the proposed design of the RFV frontal section are desirable as primary impact energy mitigation due to its ability to withstand and absorb impact loads effectively. Furthermore, it is found that the impact energy transmitted to the survival room may feasibly be minimized in these two impact events. The primary outcome of this study is design recommendation for enhancing the level of safety of the off-road vehicle where impact loading is expected.   


Sign in / Sign up

Export Citation Format

Share Document