Effect of Sulfuric Acid Concentration on Acoustic Emission Signals in Uniform-Corrosion

2006 ◽  
Vol 321-323 ◽  
pp. 553-556 ◽  
Author(s):  
Asa Prateepasen ◽  
Chalermkiat Jirarungsatean ◽  
Pongsak Tuengsook

In petroleum industry, corrosion failures of steel structures are common. The severity of corrosion in oil distillery inorganic compounds is higher than in those of organic compounds. Inorganic compounds such as sulfur are the most influential corrosive activators inside oil or chemical storage tanks. They normally have the tanks inspected and repaired along their life time. In addition the concentration of sulfur compound increases due to the accumulation of the residuals inside the tank, and so does the corrosive rate. In this paper, Acoustic Emission (AE) has been chosen to study the characteristic of AE signals received from the uniform corrosion mechanism of mild steel (A36) in various concentrations of Sulfuric acid (H2SO4) solution. AE signals were captured using a wide band sensor (WD) and recorded by AE system model LOCAN 320. The relationship between AE signals and sulfur concentrations as well as pH were exhibited.

2011 ◽  
Vol 138-139 ◽  
pp. 635-639
Author(s):  
Z.H. Hanafi ◽  
Nordin Jamaludin ◽  
Shahrum Abdullah ◽  
M.F.M. Yusof ◽  
M.S.M. Zain

Acoustic emission is a very important test among non-destructive tests, and it has been applied for the detection of failures in various types of equipment in the petroleum industry, such as pressure vessels, tanks and pipelines. In this study, the effect of pre-existing uniform corrosion on the corrosion fatigue specimen and smooth specimen on fatigue behaviour of API 5L X70 steel pipeline in long life range was investigated by using acoustic emission in fatigue test. The presence of pre-existing uniform corrosion specimen, produces by 4 month immersion in sulphuric acid, H2SO4 (concentration 0.2 ml H2SO4 in 5000 ml deionized water ). Fully reverse (R = -1) constant amplitude fatigue test were done in corrosion fatigue and smooth specimen in different stress amplitudes. It was found that, effect of pre-existing uniform corrosion significantly reduced the fatigue life of the steel pipeline. The correlations of accumulative AE counts for corrosion fatigue higher than fatigue test because of the mechanisms of possible AE sources due to corrosion.


2021 ◽  
Vol 11 (15) ◽  
pp. 7045
Author(s):  
Ming-Chyuan Lu ◽  
Shean-Juinn Chiou ◽  
Bo-Si Kuo ◽  
Ming-Zong Chen

In this study, the correlation between welding quality and features of acoustic emission (AE) signals collected during laser microwelding of stainless-steel sheets was analyzed. The performance of selected AE features for detecting low joint bonding strength was tested using a developed monitoring system. To obtain the AE signal for analysis and develop the monitoring system, lap welding experiments were conducted on a laser microwelding platform with an attached AE sensor. A gap between the two layers of stainless-steel sheets was simulated using clamp force, a pressing bar, and a thin piece of paper. After the collection of raw signals from the AE sensor, the correlations of welding quality with the time and frequency domain features of the AE signals were analyzed by segmenting the signals into ten 1 ms intervals. After selection of appropriate AE signal features based on a scatter index, a hidden Markov model (HMM) classifier was employed to evaluate the performance of the selected features. Three AE signal features, namely the root mean square (RMS) of the AE signal, gradient of the first 1 ms of AE signals, and 300 kHz frequency feature, were closely related to the quality variation caused by the gap between the two layers of stainless-steel sheets. Classification accuracy of 100% was obtained using the HMM classifier with the gradient of the signal from the first 1 ms interval and with the combination of the 300 kHz frequency domain signal and the RMS of the signal from the first 1 ms interval.


2021 ◽  
Vol 11 (14) ◽  
pp. 6550
Author(s):  
Doyun Jung ◽  
Wonjin Na

The failure behavior of composites under ultraviolet (UV) irradiation was investigated by acoustic emission (AE) testing and Ib-value analysis. AE signals were acquired from woven glass fiber/epoxy specimens tested under tensile load. Cracks initiated earlier in UV-irradiated specimens, with a higher crack growth rate in comparison to the pristine specimen. In the UV-degraded specimen, a serrated fracture surface appeared due to surface hardening and damaged interfaces. All specimens displayed a linearly decreasing trend in Ib-values with an increasing irradiation time, reaching the same value at final failure even when the starting values were different.


2006 ◽  
Vol 13-14 ◽  
pp. 351-356 ◽  
Author(s):  
Andreas J. Brunner ◽  
Michel Barbezat

In order to explore potential applications for Active Fiber Composite (AFC) elements made from piezoelectric fibers for structural integrity monitoring, a model experiment for leak testing on pipe segments has been designed. A pipe segment made of aluminum with a diameter of 60 mm has been operated with gaseous (compressed air) and liquid media (water) for a range of operating pressures (between about 5 and 8 bar). Artificial leaks of various sizes (diameter) have been introduced. In the preliminary experiments presented here, commercial Acoustic Emission (AE) sensors have been used instead of the AFC elements. AE sensors mounted on waveguides in three different locations have monitored the flow of the media with and without leaks. AE signals and AE waveforms have been recorded and analysed for media flow with pressures ranging from about 5 to about 8 bar. The experiments to date show distinct differences in the FFT spectra depending on whether a leak is present or not.


JOM ◽  
2020 ◽  
Author(s):  
Joona Rajahalme ◽  
Siiri Perämäki ◽  
Roshan Budhathoki ◽  
Ari Väisänen

AbstractThis study presents an optimized leaching and electrowinning process for the recovery of copper from waste printed circuit boards including studies of chemical consumption and recirculation of leachate. Optimization of leaching was performed using response surface methodology in diluted sulfuric acid and hydrogen peroxide media. Optimum leaching conditions for copper were found by using 3.6 mol L−1 sulfuric acid, 6 vol.% hydrogen peroxide, pulp density of 75 g L−1 with 186 min leaching time at 20°C resulting in complete leaching of copper followed by over 92% recovery and purity of 99.9% in the electrowinning. Study of chemical consumption showed total decomposition of hydrogen peroxide during leaching, while changes in sulfuric acid concentration were minor. During recirculation of the leachate with up to 5 cycles, copper recovery and product purity remained at high levels while acid consumption was reduced by 60%.


2008 ◽  
Vol 13-14 ◽  
pp. 41-47 ◽  
Author(s):  
Rhys Pullin ◽  
Mark J. Eaton ◽  
James J. Hensman ◽  
Karen M. Holford ◽  
Keith Worden ◽  
...  

This work forms part of a larger investigation into fracture detection using acoustic emission (AE) during landing gear airworthiness testing. It focuses on the use of principal component analysis (PCA) to differentiate between fracture signals and high levels of background noise. An artificial acoustic emission (AE) fracture source was developed and additionally five sources were used to generate differing AE signals. Signals were recorded from all six artificial sources in a real landing gear component subject to no load. Further to this, artificial fracture signals were recorded in the same component under airworthiness test load conditions. Principal component analysis (PCA) was used to automatically differentiate between AE signals from different source types. Furthermore, successful separation of artificial fracture signals from a very high level of background noise was achieved. The presence of a load was observed to affect the ultrasonic propagation of AE signals.


2007 ◽  
Vol 329 ◽  
pp. 15-20 ◽  
Author(s):  
Xun Chen ◽  
James Griffin

The material removal in grinding involves rubbing, ploughing and cutting. For grinding process monitoring, it is important to identify the effects of these different phenomena experienced during grinding. A fundamental investigation has been made with single grit cutting tests. Acoustic Emission (AE) signals would give the information relating to the groove profile in terms of material removal and deformation. A combination of filters, Short-Time Fourier Transform (STFT), Wavelets Transform (WT), statistical windowing of the WT with the kurtosis, variance, skew, mean and time constant measurements provided the principle components for classifying the different grinding phenomena. Identification of different grinding phenomena was achieved from the principle components being trained and tested against a Neural Network (NN) representation.


2005 ◽  
Vol 5 (12) ◽  
pp. 3277-3287 ◽  
Author(s):  
P. Vaattovaara ◽  
M. Räsänen ◽  
T. Kühn ◽  
J. Joutsensaari ◽  
A. Laaksonen

Abstract. New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm) and the lower end of Aitken mode particles (d≤50 nm) is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to shed light on the presence of an organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10 nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.


Sign in / Sign up

Export Citation Format

Share Document