Evaluation of Thermal Fatigue Properties of Surface Treated AISI H13 Steel for Aluminum Die-Casting

2006 ◽  
Vol 326-328 ◽  
pp. 1173-1176
Author(s):  
Kuk Tae Youn ◽  
Young Mok Rhyim ◽  
Won Jon Yang ◽  
Jong Hoon Lee ◽  
Chan Gyu Lee

The influence of surface treatment such as nitriding, TNHT(Ti Nano Heat-treatment, PHILOS TECHNOLOGIES, INC.) and PVD coating on the thermal crack propagation behavior of hot work die steel was investigated. To examine the thermal fatigue resistance, the cyclic thermal shock system consisted of induction heating and water spray quenching unit was constructed and Lm is proposed as the index representing the susceptibility to crack initiation and propagation. Thermal stress depending on test temperature was also simulated by FEM. The TNHT specimen showed lower Lm value than as-heat treated specimen but, in the case of maximum and average crack length, the TNHT specimen exhibited higher value than those of as-heat treated specimen. This means that the small number of large cracks were initiated and propagated selectively in the TNHT specimen. This result can be caused by two contrary effects of diffusion layer, those are introduction of the residual compressive stress good for mitigation of thermal tensile stress and very high surface hardness harmful for crack initiation. However, Lm value of salt-bath nitriding specimen was very high due to the white layer in spite of the existence of diffusion layer.

Author(s):  
Ming-Liang Zhu ◽  
Fu-Zhen Xuan ◽  
Zhengdong Wang

The fatigue properties of a low strength weld metal in a dissimilar welding joint in high cycle and very high cycle regimes were investigated by fully reversed axial tests in air at room temperature and 370°C. A clear duplex S-N curve existed as a result of the transition of fatigue failure mode from surface-induced failure to internal-induced failure at 370°C, while the S-N curve was continuously decreased at room temperature. A new model was successfully proposed to predict fatigue life, and interpret the crack initiation modes transition from surface inclusion to interior inclusion. It was concluded that cracks were initiated by competition among non-metallic inclusions, welding pores and discontinuous microstructures in high cycle regime. While in the very high cycle regime, non-metallic inclusions were the dominant crack initiation mechanism which depended on stress level, inclusion size as well as inclusion depth.


Author(s):  
Aizoh Kubo

Some typical examples of failure of gears made from very high strength steel are shown and its trigger and whose causes are discussed: Many of such failure are triggered by tooth side edge contact or tooth tip edge contact and meshing-in of the wear debris. The limit of validity of the traditional methods for load carrying capacity of gears exists in the fact that they are based on the theory of contact of tooth flanks that realize conjugate or almost conjugate action of gears. To be able to design reliable gears made from very high strength steel, a principle is shown that suggests a new method for tooth form modification and of longitudinal crowing modification to avoid such failure. Metallurgical problem of gear material and special heat treatment aiming high surface hardness is also discussed.


2011 ◽  
Vol 117-119 ◽  
pp. 821-823
Author(s):  
Gao Lu ◽  
Wen Yan Wang ◽  
Jing Pei Xie

This paper studies the application in different cast iron brake drum the thermal fatigue properties of materials. The results show that the stress concentration factor of grey cast iron, hot fatigue crack initiation, low intensity, and easy to expand, organization crack initiation poor stability, antioxidant ability is poor, thermal fatigue is poorer. 35% of vermicular cast iron and of ductile iron high strength, toughness, good stress concentration factor small, thermal fatigue is well.


2018 ◽  
Vol 37 (4) ◽  
pp. 289-298
Author(s):  
Wei Chao ◽  
Liu Guang-lei ◽  
Wan Hao ◽  
Li Yu-shan ◽  
Si Nai-chao

AbstractThe effect of heat treatment on the microstructure and thermal fatigue properties were studied by means of optical microscope (OM) and scanning electron microscope (SEM). Energy dispersive X-ray detector (EDX) was used to analyze the role of phase composition in fatigue crack propagation. The results show that after heat treatment, the ultimate tensile strength increased from 285 MPa to 368 MPa and the elongation increased from 5.8 % to 6.5 %. During the initiation of fatigue crack, the crack was mainly propagated through eutectic Si area. With the long needles of eutectic Si particles spherodized after heat treatment, the split action from brittle Si particles to α-Al matrix was reduced and prolonged the fatigue crack initiation period. After aging for 6 h, the dispersed precipitation of secondary phases (Al2Cu, Mg2Si) elevated the driving force of crack propagation, blocked the spread of crack in the grain boundary, decreased the rate of fatigue crack growth and improved the fatigue resistance of alloy at the same time. In the process of crack initiation, the surplus-phase around the grain boundary fell off from α-Al matrix under thermal cycling stresses. The combination of interfaces was weaken by cycling stress and the fatigue crack was finally grown up in the weakness area between matrix and secondary phase.


2008 ◽  
Vol 385-387 ◽  
pp. 829-832
Author(s):  
Mian Zhang ◽  
Nobusuke Hattori ◽  
Shinichi Nishida

Diamond-like carbon (DLC) is an amorphous hard carbon, which has very high hardness, high resistivity, and dielectric optical properties. Economically and technologically attractive properties have drawn almost unparalleled interest towards the coatings. Eutectoid steel is a kind of material that has been widely used in shafts and various kinds of industrial components. Three kinds of fatigue specimens with different DLC conditions were used in this study. Fatigue test had been performed to investigate the effects of DLC on fatigue properties of eutectoid steel. The fractography was analyzed by a scanning electron microscope (SEM), and surface hardness was also evaluated. The fatigue limits of the DLC coated specimens did notincrease after DLC process, though the compressive residual stress which produced by DLC process can prevent fatigue fracture. According to the results of fatigue test, the optimal DLC method for improving the fatigue properties of eutectoid steel is determined and the relationship between fatigue limits and coating bias are obtained.


2013 ◽  
Vol 789 ◽  
pp. 313-319 ◽  
Author(s):  
Myrna Ariati ◽  
Rizki Aldila

In metal forming process by die casting method, nitriding plays an important role in increasing the surface hardness. The influence of shot peening and shot blasting to the modified. H13 tool steel before nitriding process has been studied. Nitriding has been done in a gas vacuum furnace, at temperature of 510°C for 5 hours. Shot peening was conducted by using steel balls with a pressure of 461 kPa. Shot blasting has been done after shot peening using SiC particles. Characterization of the sample surface before and after the variation process is focused on changing the microstructure, micro hardness distribution, depth and composition nitriding layer. It has been found that shot peening prior to nitriding increase the maximum surface hardness to 1196 HV and effective depth of diffusion layer to 72 μm. Meanwhile, the nitriding without any prior surface treatment produces a maximum hardness of HV 1101.4 with effective depth of diffusion layer of 54 μm. Shot peening prior to nitriding produces white layer thickness of 4.1 μm thicker compared to white layer developed in nitriding without shot peening which produces 3.7 μm. While on nitrided material without any preceded surface treatment did not reveal any white surface layer.


2014 ◽  
Vol 1025-1026 ◽  
pp. 737-744
Author(s):  
Lertjirakul Tanakorn ◽  
Yuttanant Boonyongmaneerat ◽  
Visuttipitukul Patama

H13 steel has been widely used in several metal working industries. Plasma nitriding is employed for improving surface hardness, but it significantly decreases corrosion resistance of H13 steel. To improve corrosion resistance, Cr plating before and after plasma nitriding is studied in the research. Surface characterization, phase analysis, hardness and corrosion test were done to evaluate the appropriate method to improve corrosion resistance. It was found that Cr plating after plasma nitriding can improve the corrosion resistance close to as-heat treated sample. The formation of Cr can increase the corrosion potential to-310.66 mV(Ag-AgCl) comparing to-349.54 mV(Ag-AgCl) of as-heat treated sample. For the corrosion resistance at constant applied voltage tested by potentiostatic technique, the sample with plasma nitriding prior to Cr plating shows the lowest corrosion current which implies the lowest corrosion rate. For the process in which Cr plating is applied before plasma nitriding, CrN layer can be formed on the surface, but this layer is very thin (about 100 nm thick). This thin layer retards nitrogen diffusion; hence, nitrided layer beneath CrN layer cannot be formed. With only thin layer of CrN, both corrosion resistance and micro-scale surface hardness cannot be improved.


2015 ◽  
Vol 812 ◽  
pp. 253-258
Author(s):  
Andrea Szilagyine Biro ◽  
Endre Szabo ◽  
Miklos Tisza

Ferritic nitrocarburising is a surface alloying heat treatment, which can provide to components high surface hardness, thus improved wear resistance. In structural steels the porosity of white layer has a key role in wear resistance: the porosity is undesirable. For tool steels the absence of white layer is undesirable. Floe process is one way to decrease the porosity of white layer. During our experiments we applied a modified Floe process on two different steels. The acontol of this process is simpler than conventional process. We measured the micro-hardness as a function of depth from the surface, and we made microscopic examination to analyse the structure of nitrided layer.


Sign in / Sign up

Export Citation Format

Share Document