Microstructure Model for Finite Element Analysis of 4-Step 3-D Rectangular Braided Composites under Ballistic Impact

2007 ◽  
Vol 334-335 ◽  
pp. 485-488 ◽  
Author(s):  
Jun Lian ◽  
Bo Hong Gu ◽  
Wei Dong Gao

This paper presents a real microstructure model which has the same fiber volume fraction and tows’ spatial configuration with 3D rectangular composites to simulate the ballistic impact damage of the composites struck by steel projectile. The commercial available FEM code of Ls-Dyna was employed to calculate the interaction between the composite targets and steel projectile. From the comparison of residual velocities between simulation and experiment, it is proven the microstructure model can simulate the ballistic penetration with higher precision than the continuum model. The acceleration vs. time curve reveals the complicated interaction between composite and projectile in ballistic penetration. The prominent advantage of the microstructure model is that it can simulate the local damage mode of the composites at real microstructure level and obtain vivid simulating results.

2020 ◽  
Vol 29 (9) ◽  
pp. 1465-1484
Author(s):  
Qingsong Wei ◽  
Bohong Gu ◽  
Baozhong Sun

Flexible fabrics have been widely used in body armor designs. Here we report ballistic impact damage of stacked cross-plied composite fabric and cross-plied laminated panels. The ballistic impact behaviors of stacked cross-plied composite fabric and cross-plied laminated panel have been tested with fragment-simulating projectiles under the strike velocity 550–600 m/s to explore the influence of the layers combination of fabric target on ballistic impact. Two types of macroscopic anisotropy continua finite element models based on fabric targets structures are established to analyze the ballistic mechanism of stacked cross-plied composite fabric and cross-plied laminated panels. The impact damage morphologies and energy absorptions have also been compared between the tests and finite element analysis results. We have found the stacked fabric construction absorbed more energy than their counterpart cross-plied laminated panel, while the laminated panel shows better structural integrity and stability during ballistic penetration.


2018 ◽  
Vol 53 (14) ◽  
pp. 1917-1931 ◽  
Author(s):  
Long Zhang ◽  
Dianyin Hu ◽  
Rongqiao Wang ◽  
Yuqi Zeng ◽  
Chongdu Cho

Traditional representative volume element (RVE) model composed of impregnated yarns and surrounding matrix for the 3D four-directional braided composites, requires periodic mesh in order to impose periodic boundary condition, which is quite challenging and time-consuming due to complex internal mesoscopic architecture. In this regard, this study presents a novel approach to establish a parametric RVE model comprised of dry fibers and matrix through integrating Matlab with Abaqus. The technique is able to produce RVE models of arbitrary braiding angle, fiber volume fraction, etc. by simply changing the input values for the Matlab procedure. Based on this, finite element analysis is performed on the proposed model to predict tensile modulus of the 3D four-directional braided composites and examine the influence of mesoscopic geometry and material parameters. Numerical application demonstrates that this technique has good prediction accuracy for the small braiding angle case while great deviation for the big braiding angle case. In the end, the technique’s advantages and disadvantages over the traditional RVE model, and its potential applications are discussed.


2010 ◽  
Vol 45 (9) ◽  
pp. 965-987 ◽  
Author(s):  
Xiwen Jia ◽  
Baozhong Sun ◽  
Bohong Gu

Ballistic penetration of conically cylindrical steel projectile into 3D orthogonal woven composite (3DOWC) was investigated from finite element analyses and ballistic impact tests. Based on the observation of the microstructure of the 3DOWC, a microstructure model was established for finite element calculation. In this model, the cross-section of warp, weft and Z-direction fiber tows was regarded as rectangular. The noninterwoven warp and weft yarns were bonded together with Z-yarns. The impact damage and energy absorption of the 3DOWC penetrated by a conically cylindrical steel projectile were calculated from the microstructure model and compared with the testing results. Good agreements with experiments have been observed, especially for deformation, damage evolution, and strain wave distribution in the 3DOWC under ballistic penetration.


2019 ◽  
Vol 53 (28-30) ◽  
pp. 4003-4013 ◽  
Author(s):  
Brianna M Bruni-Bossio ◽  
Garrett W Melenka ◽  
Cagri Ayranci ◽  
Jason P Carey

There is an increasing demand for the use of “green”-based materials as reinforcement and matrix materials in composites. However, the ability of these natural-based materials to perform as consistently and reliably as conventional materials is still relatively unknown. A key importance in the viability of these materials is the evaluation of the content of voids and imperfections, which may affect the properties of the entire composite. In this study, the microstructure of tubular-braided composites manufactured from cellulose fibers and a partially bio-derived resin was studied with the use of micro-computed tomography. These methods were used to determine the effect of modifying braid angle, resin type, and curing method on fiber volume fraction, void volume, and void distribution. It was determined that the void content increased with the increase in braid angle, and vacuum-bagging reduced the total void content. The sample with the smallest braid angle produced with vacuum-bagged curing contained a void fraction of 1.5%. The results of this study proved that the materials used could be viable for further testing and development and that micro-computed tomography imaging is valuable for identifying how to improve consistency and minimize imperfections to create more accurate and reliable natural fiber-braided composites.


2012 ◽  
Vol 585 ◽  
pp. 332-336 ◽  
Author(s):  
K. Venkata Rao ◽  
S. Raja ◽  
T. Munikenche Gowda

A two noded active sandwich beam element is formulated by employing layerwise Timoshenko’s beam theory. Displacement continuity conditions are imposed between different layers of the sandwich. This element is used to model an adaptive sandwich beam with macro-fiber composite (MFC) as extension actuator and shear actuated fiber composite (SAFC) as shear actuator. Influence of thickness and volume fraction of the active fiber (PZT-5A and single crystal PMN-PT) in the composite actuators on the actuation performance of the sandwich beam is investigated. Based on several numerical experiments, it is found that the PMN-PT based shear actuators give maximum actuation authority for the volume fraction of the fibers in the range of 80%-85%, whereas in case of PZT-5A based shear actuators the actuation authority remains maximum for the fiber volume fractions 80% and above.


2011 ◽  
Vol 341-342 ◽  
pp. 183-188
Author(s):  
Bao Zhong Sun ◽  
Kun Luan ◽  
Bo Hong Gu ◽  
Xiao Meng Fang ◽  
Jia Jin Zhang

Green composite made from ramie fabric and polypropylene (PP) is a kind of recyclable and environmental friendly material. Ramie fiber tows have relatively good mechanical properties comparing with other bast fibers, and hence the fabric woven by ramie yarn shows excellent in-plane mechanical behaviors. PP can be fully recovered and recycling used for its thermoplastic character. Ramie fabrics reinforced by PP have better shape formability and maintenance. In this paper, we proposed a plain weave in sample dobby loom, and reinforced four laid-layers together by PP particle through hot pressing. The mechanical behaviors of the ramie-PP composite were tested by MTS-810 Material Testing System in weft and warp directions separately which were essential parameters to the following topology optimization in finite element analysis (FEA) software. A body of eco-power automobile consisting of shell and chassis was original designed in Pro/E® Wildfire 5.0. For the chassis is the main bearing structure, it is an important part in the eco-power automobile body and was chosen to be topology optimized. Fiber volume fraction and structure optimization of the chassis model are evaluated and simulated to guide the material formation of manufacture progress.


2007 ◽  
Vol 546-549 ◽  
pp. 1555-1558
Author(s):  
Chun Jun Liu ◽  
Yue Zhang ◽  
Da Hai Zhang ◽  
Zhong Ping Li

In this paper the composite fracture process has been simulated via the finite element method. A micromechanics model was developed to predict the stress-strain response of a SiO2f/ SiO2 composite explicitly accounting for the local damage mechanisms such as fiber fracture and interfacial debonding. The effects of interfacial strength and fiber volume fraction on the toughness of fiber-reinforced ceramic matrix composites were investigated. The results showed that the composite failure behaviors correlated with the interface strength, which could achieve an optimum value for the elevation of the composite toughness. The increase of fiber volume fraction can make more toughening contributions.


2020 ◽  
Vol 54 (13) ◽  
pp. 1761-1781
Author(s):  
SA Pottigar ◽  
B Santhosh ◽  
RG Nair ◽  
P Punith ◽  
PJ Guruprasad ◽  
...  

Three-dimensional braided composites with zero, negative and isotropic coefficient of thermal expansion are presented based on an analytical homogenization technique. The configuration of the braided composites is worked out considering the exact jamming condition leading to higher fiber volume fraction. A total of four configurations of three-dimensional-braided composite representative unit cells were analyzed. Among these, two arrangements are 4-axes and the other two are 5-axes. Special emphasis is given on the detailed description of the representative unit cells. Analysis reveals that a three-dimensional-braided composite configuration with thermoelastic isotropic properties having same coefficient of thermal expansion along x-, y-, and z-axes is achievable. As a special case, the homogenization model is used to predict, for the first time, a configuration of braided architecture and material leading to zero coefficient of thermal expansion along x-, y- and z-directions.


Sign in / Sign up

Export Citation Format

Share Document