Effects of Different Antimony Dopants on ZnO-V2O5 Based Varistor Ceramics

2007 ◽  
Vol 336-338 ◽  
pp. 735-738
Author(s):  
Ming Zhao ◽  
Wei Min Wang ◽  
Xiang Chun Liu ◽  
Chang Sheng Tian

The effects of pre-synthesized V2O5/Sb2O3 compound, SbVO4 and Sb2O3 on the microstructure and electrical properties of ZnO-V2O5 based varistor ceramics have been studied. The general homogeneous microstructure and phase composition of the ceramics have not been influenced by the antimony doping form changes, except for the gradual decrease in average grain size and the increase in spinel formation within the ceramics. The ultimate cause of micro-structural variations with the antimony doping form changes seems to have been the gradual increase in Sb3+ concentration within the ceramics. This change in micro-composition, together with the changes in microstructure, caused the electrical characteristics of the ceramics to vary. The pre-synthesized V2O5/Sb2O3 compound is the most effective antimony dopant in term of its effect on the ceramics.

2016 ◽  
Vol 697 ◽  
pp. 262-266
Author(s):  
Zhan Chuan Cao ◽  
Liao Ying Zheng ◽  
Li Hong Cheng ◽  
Tian Tian ◽  
Guo Rong Li

The microstructure and electrical properties of CeO2-doped ZnO-Bi2O3-based varistors were investigated for different amounts of the dopant. The phase composition of CeO2-doped samples was similar to the undoped samples. Ce mainly segregated at the grain boundaries within the EDS detection limit. The average grain size decreased from 7.3 to 6.7 μm and the breakdown voltage increased from 438 to 501 V/mm when the content of CeO2 ranged from 0 to 0.2 mol%. The nonlinear coefficient increased from 38 to 51 when the content of CeO2 increased from 0 to 0.1 mol%., but the further doping caused it to decrease up to 44 at 0.2mol%. The leakage current decreased from 1 to 0.4 μA/cm2 when the content of CeO2 ranged from 0 to 0.1 mol%. Then it increased to 0.7 μA/cm2 at 0.2 mol%. The density of interface states, the barrier height and the donor concentration increased when the content of CeO2 ranged from 0 to 0.1 mol%, but decreased at 0.2 mol%. Hence, when the content ranges from 0 to 0.1 mol%, CeO2 acts as a donor and can improve the electrical properties.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1978 ◽  
Author(s):  
Xianqiang Fan ◽  
Zhipeng Guo ◽  
Xiaofeng Wang ◽  
Jie Yang ◽  
Jinwen Zou

A pre-hot-deformation process was applied for a polycrystalline nickel-base superalloy to active deformation twins and dislocations, and subsequent slow cooling treatment was used to achieve grain refinement and microstructure homogenization. The microstructural evolution of the alloy was investigated, and the corresponding underlying mechanism was discussed. It was found that twinning mainly occurred in large grains during pre-hot-deformation owing to the stress concentration surrounding the large grains. High density dislocations were found in large grains, and the dislocation density increased approaching the grain boundary. The average grain size was refined from 30 μm to 13 μm after slow cooling with a standard deviation of grain size decreasing from 10.8 to 2.8, indicating a homogeneous microstructure. The grain refinement and microstructure homogenization during cooling process could be achieved via (i) static recrystallization (SRX), (ii) interaction of twin tips and γ’ precipitates, and (iii) grain coarsening hindered by γ’ precipitates in grain boundaries.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2097
Author(s):  
Alexander I. Tyurin ◽  
Vyacheslav V. Rodaev ◽  
Svetlana S. Razlivalova ◽  
Viktor V. Korenkov ◽  
Andrey O. Zhigachev ◽  
...  

The mats of yttria-stabilized tetragonal zirconia nanofibers were prepared using electrospinning. The effect of calcination temperature in the range of 600–1200 °C on their microstructure, phase composition and mechanical properties was investigated. Phase composition of the nanofibers did not change in all ranges of the calcination temperatures, while the average grain size increased from 8 to 39 nm. Nanoindentation testing of the mats showed a decrease in the hysteresis loop energy in samples with higher calcination temperature. Hardness and the elastic modulus measured with the indentation technique were the highest for the mats calcined at 900 °C.


2013 ◽  
Vol 591 ◽  
pp. 54-60
Author(s):  
Xiu Li Fu ◽  
Yan Xu Zang ◽  
Zhi Jian Peng

The effect of WO3doping on microstructural and electrical properties of ZnO-Pr6O11based varistor materials was investigated. The doped WO3plays a role of inhibitor in ZnO grain growth, resulting in decreased average grain size from 2.68 to 1.68 μm with increasing doping level of WO3from 0 to 0.5 mol%. When the doping level of WO3was lower than 0.05 mol%, the nonlinear current-voltage characteristics of the obtained varistors could be improved significantly with increasing amount of WO3doped. But when the doping level of WO3became higher, their nonlinear current-voltage performance would be dramatically deteriorated when more WO3was doped. The optimum nonlinear coefficient, varistor voltage, and leakage current of the samples were about 13.71, 710 V/mm and 13 μA/cm2, respectively, when the doping level of WO3was in the range from 0.03 to 0.05 mol%.


2008 ◽  
Vol 368-372 ◽  
pp. 103-105
Author(s):  
Zhi Bin Tian ◽  
Xiao Hui Wang ◽  
Ji Li ◽  
Wei Zhao ◽  
Long Tu Li

A citrate method to synthesize 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 nano-powder was studied. The stable gel was obtained by the control of the pH value and temperature of the precursor solution. The BNBT nano-powder was produced after calcining the xerogel at 600°C~800°C. The average grain size of the powder calcined at 700°C for 3 h is 50 nm, and the grain size of the ceramic sintered at 1080°C is 0.7 μm. The sintering temperature used is 100°C lower than the BNBT ceramic prepared by traditional method, but the electrical properties were comparable. In addition, it was found that the ball-milling process has important effect on the morphology of the ceramics and the orientation crystals were eliminated due to the disintegration of agglomerates during milling.


2016 ◽  
Vol 690 ◽  
pp. 114-119
Author(s):  
Piewpan Parjansri ◽  
Manlika Kamnoy ◽  
Uraiwan Intatha ◽  
Sukum Eitssayeam ◽  
Tawee Tunkasiri

Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) ceramics were produced by using the seed-induced method. The nano-particle BZ (BaZrO3) seeds were mixed with BaCO3, CaCO3, ZrO2 and TiO2 powder for preparing by the mixed oxide method. The XRD results indicated that all powder and sintered ceramic samples showed a pure perovskite phase with coexistence between rhombohedral and tetragonal phase. As the BZ seed content increased, the density of ceramics tended to decrease from 5.61 g/cm3 to 5.37 g/cm3. The average grain size of the ceramics was in the range of 12.15 -13.50 mm. The dielectric loss (tand) was less than 0.03 for all samples at room temperature (at 1 kHz). Other electrical properties, including dielectric constant (εr), remnant polarization (Pr), and piezoelectric charge coefficient (d33) values decreased with increasing BZ seed doping with relates to the decreasing grain size and density of BCZT ceramics. However, the values of coercive field (Ec) decreased and piezoelectric voltage coefficient (g33) increased with BZ seed doping.


2008 ◽  
Vol 368-372 ◽  
pp. 456-458
Author(s):  
Huan Liu ◽  
Shu Ping Gong ◽  
Dong Xiang Zhou ◽  
Chun Fang Cheng ◽  
Zhi Ping Zheng ◽  
...  

Dense PTC ceramics were prepared with BaTiO3 nanopowders synthesized by hydrothermal method. BaCO3 and Ti(OC4H9)4 were used as barium and titanium sources, and Y(NO)3·6H2O as the donor dopant respectively. The average grain size of the powders obtained after hydrothermal treatment at 160°C for 9h was about 30nm with cubic structure. Mn(NO3)2 was introduced to the as-prepared nanopowders in order to improve the PTC effect. After sintered at 1280°C, the PTC ceramic samples exhibited sufficient resistance jump ratio(1.086×103) around Curie temperature, the density of which was 5.81g/cm3(96.5% of the theoretical density).


1991 ◽  
Vol 249 ◽  
Author(s):  
Shigeyuki Sōmiya ◽  
Kazumitsu Hishinuka ◽  
Zenjiro Nakai ◽  
Notoshi Abe ◽  
Tokuji Akiba

ABSTRACTWell-crystallized Y2O3 -ZrO2 powder of 12nm crystallite size was synthesized by RoAogenious precipitation under hydrothermal condition at 180°C for 1 hour. This powder consisted of tetragonal zirconia. After calcination and ball milling, the crystiilite size was 22 nm and the tetragonal phase was reduced to 55% by ball milling. The average grain size was 0.5 µm and specific: surface area was 20 m /g. Highly dense TZP(> 99%) with a homogeneous microstructure was obtained by sintering this powder at 1400°C for 2 hours.


2020 ◽  
Author(s):  
Pai Peng ◽  
Jingpeng Niu ◽  
Liyi Shi ◽  
Yunzhu Mei ◽  
Sanming Du ◽  
...  

Abstract The dense ZnO-Bi 2 O 3 -MnO 2 - x SiO 2 (ZBMS) varistors were fabricated by flash sintering method under the low temperature of 850 o C within 2 minutes. The phase structure, density, microstructure, and electrical characteristics of the flash-sintered ZBMS varistors with different SiO 2 doping content were investigated. According to the XRD analysis, many secondary phases were detected due to the doping of SiO 2 . Meanwhile, the average grain size decrease with increasing SiO 2 doping content. In addition, the electrical properties of all samples were analyzed. The improved nonlinear characteristics were obtained in SiO 2 doped samples, which can be attributed to the ion migration and oxygen absorption induced by the doping of SiO 2 . The flash-sintered ZBMS varistor ceramics exhibited excellent comprehensive electrical properties, with the nonlinear coefficient of 24.5, the threshold voltage and leakage current of 385 V/mm and 11.8 µA, respectively.


2005 ◽  
Vol 19 (30) ◽  
pp. 1783-1791 ◽  
Author(s):  
O. P. THAKUR ◽  
CHANDRA PRAKASH

The effect of niobium doping on the structure and electrical properties with the following compositions Pb ( Zr 0.52 Ti 0.48)1-5X/4 Nb X O 3 with 0<x<0.025 was investigated. The materials were prepared by the usual ceramic technique using high purity raw materials. Disc-shaped samples of each compositions were sintered at 1250°C for 3 hours. The sample structure was determined by X-ray diffractometry. The average grain size, the maximum dielectric permittivity and the remnant polarization first increases up to x = 0.005 concentration of Nb 5+ and then decreases with higher concentration of niobium, while the coercive field does not show any variation. The transition temperature decreases with the increase in niobium concentration.


Sign in / Sign up

Export Citation Format

Share Document