Fatigue Strength of Formable Ultra High-Strength TRIP-Aided Steels with Bainitic Ferrite Matrix

2007 ◽  
Vol 345-346 ◽  
pp. 247-250 ◽  
Author(s):  
Koh Ichi Sugimoto ◽  
Junji Tsuruta ◽  
Sung Moo Song

Formable ultra high-strength TRIP-aided steel with bainitic ferrite matrix structure (TBF steel) contributes to a drastic weight reduction and an improvement of crash safety of automobile. In this study, fatigue strength of 0.2%C-1.5%Si-1.5%Mn TBF steels was investigated. High fatigue limit was achieved in TBF steels austempered at 400-450oC, containing a large amount of stable retained austenite. The fatigue limit was linearly related with mobile dislocation density, as well as TRIP effect of retained austenite. When compared to conventional martensitic steel, the TBF steel exhibited lower notch-sensitivity or higher notched fatigue performance. Complex additions of 0.5%Al, 0.05%Nb and 0.2%Mo considerably improved the notched fatigue performance, as well as the smooth fatigue strength. This was associated with the stabilized retained austenite and refined microstructure which suppress fatigue crack initiation and/or propagation.

2016 ◽  
Vol 867 ◽  
pp. 55-59
Author(s):  
Isamu Yoshida ◽  
Katsuya Yamamoto ◽  
Kenta Domura ◽  
Koshiro Mizobe ◽  
Katsuyuki Kida

Martensitic high-carbon, high-strength bearing steel is used for rolling contact applications when high wear and fatigue resistance are required. Due to its high fatigue strength, SUJ2 is not used for only bearings but for shafts. The objective of this work is a clarification of the relationship between quenching times and retained austenite amount of SUJ2 steel. It was found that repeatedly induction heating increased the retained austenite amount, but did not change the Vickers hardness.


2010 ◽  
Vol 638-642 ◽  
pp. 3074-3079 ◽  
Author(s):  
Kohichi Sugimoto ◽  
Shohei Sato ◽  
Goro Arai

Ultra high-strength TRIP-aided steel consisting of bainitic ferrite matrix and interlath retained austenite films (TBF steel) possesses high toughness and fatigue strength, as well as high resistance against hydrogen embrittlement. In this study, to improve further these mechanical properties, the effects of hot forging and subsequent isothermal transformation holding process (FIT process) on microstructure, retained austenite characteristics, tensile properties and toughness of the TBF steel with chemical composition of 0.4%C, 1.5%Si, 1.5%Mn, 0.5%Cr, 0.2%Mo, 0.05%Nb and 0.5%Al (mass%) were investigated. The FIT process brought on an excellent combination of tensile strength of 1350-1550 MPa and Charpy impact absorbed value of 100-110 J/cm2 in the developed TBF steel, exceeding so much that of SCM440 steel. The excellent combination was mainly caused by (i) refined mixed structure of bainitic ferrite and retained austenite and (ii) the increased mechanical stability of retained austenite due to the FIT process.


Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract SANBAR 20 is a high-strength chromium-molybdenum steel with high-fatigue strength and excellent wear resistance in the as-rolled condition. The primary application is use as integral drill rods. This datasheet provides information on composition, hardness, and tensile properties. It also includes information on forming, heat treating, and machining. Filing Code: SA-501. Producer or source: Sandvik Steel Company.


2018 ◽  
Vol 165 ◽  
pp. 04011
Author(s):  
Keisuke Tanaka ◽  
Yuta Murase ◽  
Hirohisa Kimachi

The effect of micro-notches on the fatigue strength of nickel thin films was studied. Two types of thin films with 10 μm thickness were produced by electrodeposition using sulfamate solution without and with brightener: ultra-fine grained film (UFG) with the grain size of 384 nm and nano-crystalline grained film (NCG) with that of 17 nm. Micro-sized notches introduced by FIB had the width of 2 μm and various depths from 8 to 150μm. Fatigue tests were conducted under the stress ratio of 0.1. The fatigue strength decreased with increasing depth of notches. NCG had much higher strength than UFG compared at the same notch depth. Notches as small as 8μm did reduce the fatigue strength of both UFG and NCG. The fatigue limit was controlled by the initiation of cracks and no non-propagating crack was observed in specimens fatigued below the fatigue limit. A model of fictitious crack successfully predicted the reduction of the fatigue limit due to micro-notches. The characteristic crack length of NCG was much smaller than the UFG, while the fatigue strength of defect-free NCG was larger than that of UFG. SEM observation of fracture surfaces was conducted to reveal micromechanisms of fatigue crack initiation.


2012 ◽  
Vol 706-709 ◽  
pp. 2734-2739 ◽  
Author(s):  
Hana Jirková ◽  
Ludmila Kučerová ◽  
Bohuslav Mašek

The use of the combined influence of retained austenite and bainitic ferrite to improve strength and ductility has been known for many years from the treatment of multiphase steels. Recently, the very fine films of retained austenite along the martensitic laths have also become the centre of attention. This treatment is called the Q-P process (quenching and partitioning). In this experimental program the quenching temperature and the isothermal holding temperature for diffusion carbon distribution for three advanced high strength steels with carbon content of 0.43 % was examined. The alloying strategies have a different content of manganese and silicon, which leads to various martensite start and finish temperatures. The model treatment was carried out using a thermomechanical simulator. Tested regimes resulted in a tensile strength of over 2000MPa with a ductility of above 14 %. The increase of the partitioning temperature influenced the intensity of martensite tempering and caused the decrease of tensile strength by 400MPa down to 1600MPa and at the same time more than 10 % growth of ductility occurred, increasing it to more than 20%.


2012 ◽  
Vol 457-458 ◽  
pp. 1025-1031 ◽  
Author(s):  
Koshiro Mizobe ◽  
Edson Costa Santos ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
Katsuyuki Kida ◽  
...  

Martensitic high carbon high strength SAE 52100 bearing steel is one of the main alloys used for rolling contact applications where high wear resistance are required. Due to its high fatigue strength, SAE 52100 is recently being used not only for the production of bearings but also shafts. Refining of prior austenite grain through repeated quenching is a procedure that can be used to enhance the material’s strength. In this work, the microstructure of repeatedly quenched SAE 52100 steel and its fatigue strength under rotating bending were investigated. It was found that repeated furnace heating and quenching effectively refined the martensitic structure and increased the retained austenite content. Repeated quenching was found to improve the fatigue strength of SAE 52100.


2005 ◽  
Vol 91 (2) ◽  
pp. 278-284 ◽  
Author(s):  
Koh-ichi SUGIMOTO ◽  
Sung-Moo SONG ◽  
Jyunya SAKAGUCHI ◽  
Akihiko NAGASAKA ◽  
Takahiro KASHIMA

Author(s):  
Fachri P. Nasution ◽  
Svein Sævik ◽  
Stig Berge

Electrical power cables are used in conjunction with floating units for provision of energy to installations on the sea bed, power from land to the floater, or export of power from a wind turbine to land. Power cables that are linked to a floating unit are subjected to fatigue loading from the waves and due to the movement of the vessel in the waves. Fatigue strength needs to be verified for design. Fatigue performance of a 300 mm2 stranded copper conductor was investigated. The experimental work included fatigue tests of individual wires and full cross section conductors including unlubricated and lubricated conductors. Individual wires from different layers were tested in tension-tension mode with stress ratio R = 0.1. Full cross-section conductors were tested in cyclic reversed bending with constant tension at ends, simulating the loading at the top end of a conductor hanging off a floating structure through a bellmouth. The objective of this paper is experimental assessment of the fatigue strength of a 300 mm2 copper conductor and to investigation of the mechanisms of fatigue crack initiation and growth in individual wires. At the time of submission the test program was still in progress, and conclusions are tentative only. An updated paper with complete results will be published at a later stage.


Sign in / Sign up

Export Citation Format

Share Document