Microstructure and Mechanical Properties of Mg-Al-Ca-Sm Alloys at High Temperature

2007 ◽  
Vol 345-346 ◽  
pp. 653-656 ◽  
Author(s):  
Hyeon Taek Son ◽  
Jae Seol Lee ◽  
Ji Min Hong ◽  
Ik Hyun Oh ◽  
Kyosuke Yoshimi ◽  
...  

The aims of this research are to investigate the effect of Sm addition in Mg-Al-Ca alloys on microstructure and mechanical properties. Sm addition to Mg-5Al-3Ca based alloys results in the change from dendritic to equiaxed grain morphorlogy and formation of Al-Sm rich itermetallic compounds at grain boundary and α-Mg matrix. And these Al-Sm rich intermetallic compounds were dispersed homogeously and stabilized at high temperature. And maximum yield and ultimate strength value was obtained at Mg-5Al-3Ca-2Sm alloys at elevated temperature because of homogeneous dispersion of stable Al-Sm rich intermetallic compound at high temperature.

2012 ◽  
Vol 198-199 ◽  
pp. 216-219
Author(s):  
Wen Jian Liu ◽  
Quan An Li ◽  
Zhi Chen ◽  
Xiao Jie Song

The microstructure and mechanical properties of aged Mg-5.5Al-1.2Y magnesium alloy with Ca addition are investigated. The results show that with 1.0wt.% Ca addition, the phase of Al2Y is refined obviously and the phase of Mg17Al12 has a dramatic decrease in number. And, high melting point intermetallic compounds Al2Ca and Al4Ca are formed. Meanwhile, the β-Mg17Al12 phase become more dispersed. After 1.0wt.% Ca addition, the mechanical properties of the alloy at room and elevated temperature are improved.


2007 ◽  
Vol 345-346 ◽  
pp. 73-76 ◽  
Author(s):  
Young Kyun Kim ◽  
Hyeon Taek Son ◽  
Jae Seol Lee ◽  
Ik Hyun Oh ◽  
H.J. Kim ◽  
...  

The aims of this study are to investigate the effect of Y (yttrium) addition in the Mg-Al- Ca alloys on microstructure and mechanical properties. In additions, the alloys were solution treated in order to achieve a better understanding of the precipitation mechanisms. The as-cast microstructure of Mg-5Al-3Ca alloy and Mg-5Al-3Ca-xY alloys contains dendritic α-Mg matrix and eutectic intermetallic compound at grain boundary. The hardness values of Mg-Al-Ca alloy with Y additions were slightly increased than that of Mg-Al-Ca with no Y addition. It is because of reduction of α-Mg phase and presence of (Mg,Al)2Ca and Al-Y rich intermetallic phase at grain boundary and α-Mg matrix grains. Also, hardness value of yttrium (Y) containing alloys was increased with increasing Y contents. Compared to Mg-5Al-3Ca alloy, maximum strength and yield strength of the alloys with Y additions have slightly increased with increasing Y additions in the case of as-cast samples.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1562
Author(s):  
Chao Ding ◽  
Jian Wang ◽  
Tianhan Liu ◽  
Hongbo Qin ◽  
Daoguo Yang ◽  
...  

Full intermetallic compound (IMC) solder joints present fascinating advantages in high-temperature applications. In this study, the mechanical properties and elastic anisotropy of η’-Cu6Sn5 and Cu3Sn intermetallic compounds were investigated using first-principles calculations. The values of single-crystal elastic constants, the elastic (E), shear (G), and bulk (B) moduli, and Poisson’s ratio (ν) were identified. In addition, the two values of G/B and ν indicated that the two IMCs were ductile materials. The elastic anisotropy of η’-Cu6Sn5 was found to be higher than Cu3Sn by calculating the universal anisotropic index. Furthermore, an interesting discovery was that the above two types of monocrystalline IMC exhibited mechanical anisotropic behavior. Specifically, the anisotropic degree of E and B complied with the following relationship: η’-Cu6Sn5 > Cu3Sn; however, the relationship was Cu3Sn > η’-Cu6Sn5 for the G. It is noted that the anisotropic degree of E and G was similar for the two IMCs. In addition, the anisotropy of the B was higher than the G and E, respectively, for η’-Cu6Sn5; however, in the case of Cu3Sn, the anisotropic degree of B, G, and E was similar.


2013 ◽  
Vol 747-748 ◽  
pp. 470-477
Author(s):  
Rui Dong Liu ◽  
Xu Guang Dong ◽  
Fu Jun Wei ◽  
Yuan Sheng Yang

The effects of minor Al and Ce on the microstructures, room-temperature and high-temperature mechanical properties of as-cast Mg-6Zn magnesium alloys were investigated. With the Al addition into Mg-6Zn alloy, the coarse eutectic Mg51Zn20phases were refined and distributed discontinuously. After adding 0.5wt.% Ce into Mg-6Zn-1Al alloy, a new needle-like Al2CeZn2phase was observed. Meanwhile, the volume fraction of Mg51Zn20phase decreased and the semi-continuous Mg51Zn20phase became discontinuous globular morphology. It has been observed that the addition of Ce element coarsens the grains, and 1wt.% Al addition enhanced the yield strength and ultimate strength from 86.35MPa, 229MPa to 90.7MPa, 238MPa, respectively. Moreover, the Ce addition can significantly increase the high-temperature mechanical properties of cast Mg-6Zn-1Al alloy.


2011 ◽  
Vol 311-313 ◽  
pp. 591-595
Author(s):  
Ai Li Wei ◽  
Kun Yu Zhang ◽  
Hong Xia Wang ◽  
Wei Liang

In this work, the effects of rare element yttrium (Y) on the microstructure and mechanical properties of the as-cast Zn-25Al-5Mg-2.5Si alloy at room and elevated temperature (100°C and 180°C) have been investigated. The alloys were prepared by conventional melting and casting routs with different Y contents (0 wt.%,0.1 wt.%,0.4 wt.%,0.8 wt.%,1.2 wt.% and1.5 wt.%). The results showed that the addition of Y element led to the formation of Al3Y phase and Y2Zn17 phase in the microstructure and the mechanical properties of the alloys rose at first and then dropped with the Y content increasing. When Y content was 0.4 wt.%, the optimization of microstructure and properties especially the tensile strength at high temperature was obtained. The tensile strength of the alloy at 180°C could be increased by 26.4%.


2016 ◽  
Vol 61 (2) ◽  
pp. 761-766 ◽  
Author(s):  
A. Zieliński ◽  
M. Sroka ◽  
A. Hernas ◽  
M. Kremzer

Abstract The HR3C is a new steel for pressure components used in the construction of boilers with supercritical working parameters. In the HR3C steel, due to adding Nb and N, the compounds such as MX, CrNbN and M23C6 precipitate during service at elevated temperature, resulting in changes in mechanical properties. This paper presents the results of microstructure investigations after ageing at 650, 700 and 750 °C for 5,000 h. The microstructure investigations were carried out using scanning and transmission electron microscopy. The qualitative and quantitative identification of the existing precipitates was carried out using X-ray analysis of phase composition. The effect elevated temperature on microstructure and mechanical properties of the examined steel was described.


2006 ◽  
Vol 302-303 ◽  
pp. 138-149 ◽  
Author(s):  
Gai Fei Peng ◽  
Sammy Yin Nin Chan ◽  
Qi Ming Song ◽  
Quan Xin Yi

This paper presents a review on the effect of fire on concrete, citing 43 references. It was found that most of them are on the behavior of concrete under high temperature conditions more or less different from the standard fire condition. The problem of spalling, which high-strength concrete encounters when exposed to fire, is especially urgent to solve. Since the literature on the behavior of concrete under fire conditions is very limited, the literature even under elevated temperature has to be used as a part of the base of further research. The further research needs urgently to be carried out under the standard fire condition. Residual mechanical properties reported in most previous literature might be overestimated, where natural cooling was usually employed. Proper evaluation of fire resistance of concrete needs more experimental data obtained under various cooling regimes such as water spraying or water quenching.


Author(s):  
Georg Frommeyer ◽  
Sven Knippscheer

Aluminum-rich intermetallic compounds of the Al3X-type with transmission metals (X = Ti. Zr, Nb, V) of Groups IVb and Vb are of interest in the development of novel high-temperature and lightweight structural materials. This article describes the important physical and mechanical properties of trialuminides with DO22 structure and their L12 variations. Topical coverage includes: crystal structure and selected physical properties, plastic deformation, oxidation behavior, and applications.


Sign in / Sign up

Export Citation Format

Share Document