Calculation and Analysis on the Thermal Damage at High Temperature

2007 ◽  
Vol 353-358 ◽  
pp. 1191-1194
Author(s):  
Song Hua Tang ◽  
Ying She Luo ◽  
Ming Zhe Ning ◽  
Zhi Chao Wang

In fire resistant design traditional method based on experiment is being replaced by method based on calculation.in this paper Damage mechanics is applied to calculate and analyze the process of damage and failure of structures at high temperature through solving jointly the closed equations composed of the thermal damage evolving equation based on the residual strength, heat conduction equations, equilibrium equations, geometry equations and physics equations. An example of a truss is given to illustrate the calculation of thermal damages and stresses at high temperature. The results suggest, the bearing capacity at high temperature is influenced by these three main factors: thermal damage resulted from the elevated temperature, the thermal stresses and the original load. This provides a new research method for the modern fire-resistant design based on calculation and can be developed and applied in the numerical simulation of the process of damage and failure of the integrated structures.


2013 ◽  
Vol 3 (4) ◽  
pp. 62-67
Author(s):  
N. A IL'IN ◽  
A. A PIShchULEV ◽  
P. N SLAVKIN ◽  
A. P ShEPELEV ◽  
R. R IBATULLIN

The article describes the main provisions: a method for assessing the severity of thermal damage of compressed reinforced concrete structural elements; methods of reducing residual tensile thermal stresses in compressed working armature element; recommendations for restoring lost in fire performance of compressed elements of reinforced concrete structures of buildings and installations.



2013 ◽  
Vol 639-640 ◽  
pp. 1187-1192
Author(s):  
Shui Ping Yin ◽  
Song Hua Tang ◽  
Yong Hong Li ◽  
Chao Chen ◽  
Fang Tian ◽  
...  

The fire has brought great harm to human, so it is of vital significance to establish a scientific method of structural fire resistance design to avoid personnel casualties and economic loss in the destroy or collapse of the structure in fire. The mechanical properties of materials deteriorate at the high temperature of the fire, and the structure can be damaged easily, so the damage cumulative impact must be considered in the structural resistance capability to fire. Damage mechanics is a powerful tool in the study of structural damage and destroy. In the paper, the damage mechanics is introduced into the calculation of resistance capability to fire of concrete structure, and the thermal-damage analysis of concrete member is achieved through the second development on ANSYS platform by using the residual strength thermal-damage model at high temperature.





2021 ◽  
Vol 5 (6) ◽  
pp. 144
Author(s):  
Klaudio Bari ◽  
Thozhuvur Govindaraman Loganathan

The research aim is to investigate the performance of novel enriched mineral fibres (Filava) in polysiloxane SLIRES H62 resin. Specimens were manufactured using a vacuum bagging process and oven cured at 250 °C. Specimens were prepared for flexural testing according to BS EN ISO 14125:1998 to obtain flexural strength, modulus, and elongation. The mechanical strength was compared to similar composites, with the aim of determining composite performance index. The flexural modulus (9.7 GPa), flexural strength (83 MPa), and flexural strain (2.9%) were obtained from a three-point bending test. In addition, the study investigates the thermal properties of the composite using a state-of-art Zwick Roell high temperature tensile rig. The results showed Filava/Polysiloxane Composites had an ultimate tensile strength 400 MPa, Young’s modulus 16 GPa and strain 2.5% at 1000 °C, and no smoke and ash were observed during pyrolysis. Ongoing research is currently taking place to use Filava-H62 in fire-retardant enclosure for lithium-ferro-phosphate Batteries used in electric trucks.



Author(s):  
A. M. G. Luz ◽  
D. Balint ◽  
K. Nikbin

Progress in aero-engines and land-based gas turbines is continuously linked with a rise of the operating temperature. TBCs are multilayered structures which function together to effectively lower the temperature of its load-bearing superalloy substrate while simultaneously providing oxidation protection against high temperature combustion environments during operation. They typically comprise of a ceramic top coat for thermal insulation and a metallic bond coat that provides oxidation/corrosion resistance and enhances the adhesion of the YSZ to the superalloy substrate. Due to high-temperature oxidation of the bond coat, a thermally grown oxide (TGO) scale of continuous Al2O3 is formed between the ceramic top coat and the bond coat. The formation and growth of the TGO increases the mismatch of thermal expansion coefficients among the multilayered TBC and induce high thermal stresses leading to spallation of the YSZ coat from the underlying metal. Hence, nondestructive diagnostic tools that could reliably probe the subsurface damage state of TBCs are essential to take full advantage of these systems. In this contribution, a new concept of multiscale NDT system is presented. The instrument uses a combination of imaging-based methods with photoluminescence piezospectroscopy, a laser-based method. Imaging-based methods like mid-infrared reflectance, laser optical backscatter and infrared tomography were used to predict the overall lifetime of the coated component. When TBCs approach the end of life, micro-crack nucleation and propagation at the top coat/bond coat interface increases the amount of reflected light. This rise in reflectance was correlated with the lifetime of the component using a neural network that merges the mean and standard deviation value of the gray level. Photoluminescence piezospectroscopy was subsequently used to give information about the structural integrity of the hot spots identified in the image analysis. This laser-based technique measures in-situ the residual stress in the TGO at room temperature. Damage leads to a relaxation of the local stress which is in turn reflected in the luminescence spectrum shape. However, presently there is no agreement on the best spectral parameters that should be used as a measure of the damage accumulation in the coatings. Therefore, the evolution of luminescence spectrum from as-manufactured to critically damaged TBCs was determined using the finite element method. This approach helped to identify the most suitable spectral parameters for damage detection, improving the reliability of photoluminescence piezospectroscopy as a failure assessment tool for TBCs.



Drones ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Elena Ausonio ◽  
Patrizia Bagnerini ◽  
Marco Ghio

The recent huge technological development of unmanned aerial Vehicles (UAVs) can provide breakthrough means of fighting wildland fires. We propose an innovative forest firefighting system based on the use of a swarm of hundreds of UAVs able to generate a continuous flow of extinguishing liquid on the fire front, simulating the effect of rain. Automatic battery replacement and extinguishing liquid refill ensure the continuity of the action. We illustrate the validity of the approach in Mediterranean scrub first computing the critical water flow rate according to the main factors involved in the evolution of a fire, then estimating the number of linear meters of active fire front that can be extinguished depending on the number of drones available and the amount of extinguishing fluid carried. A fire propagation cellular automata model is also employed to study the evolution of the fire. Simulation results suggest that the proposed system can provide the flow of water required to fight low-intensity and limited extent fires or to support current forest firefighting techniques.



Author(s):  
Valery Ponyavin ◽  
Taha Mohamed ◽  
Mohamed Trabia ◽  
Yitung Chen ◽  
Anthony E. Hechanova

Ceramics are suitable for use in high temperature applications as well as corrosive environment. These characteristics were the reason behind selection silicone carbide for a high temperature heat exchanger and chemical decomposer, which is a part of the Sulphur-Iodine (SI) thermo-chemical cycle. The heat exchanger is expected to operate in the range of 950°C. The proposed design is manufactured using fused ceramic layers that allow creation of micro-channels with dimensions below one millimeter. A proper design of the heat exchanges requires considering possibilities of failure due to stresses under both steady state and transient conditions. Temperature gradients within the heat exchanger ceramic components induce thermal stresses that dominate other stresses. A three-dimensional computational model is developed to investigate the fluid flow, heat transfer and stresses in the decomposer. Temperature distribution in the solid is imported to finite element software and used with pressure loads for stress analysis. The stress results are used to calculate probability of failure based on Weibull failure criteria. Earlier analysis showed that stress results at steady state operating conditions are satisfactory. The focus of this paper is to consider stresses that are induced during transient scenarios. In particular, the cases of startup and shutdown of the heat exchanger are considered. The paper presents an evaluation of the stresses in these two cases.



2013 ◽  
Vol 12 (1) ◽  
pp. 115-122
Author(s):  
Michał Głowacki ◽  
Marian Abramowicz ◽  
Robert Kowalski

This paper describes the analysis of high temperature influence on beams with heated tensile zone. High temperature experiments were preformed under the static load of 50 or 70% of the destructive force ensuring constant value of bending moment in the central part of the heated beam. Beams with 2 reinforcement ratios – 0.44 and 1.13% were examined. In total four series of beams, three in each series (12 elements) were used. This paper analyses the reduction of relative beam cross section stiffness depending on reinforcement temperature. Experimentally obtained stiffness values calculated in two ways (element maximal deflection and deflection measured in three points of analysed element) were compared to calculation results made according to Eurocode. The performed analysis shows that reduction of the stiffness of element based on Eurocode calculations is slightly bigger than the experimentally obtained one.



Sign in / Sign up

Export Citation Format

Share Document