Universal Designed Structures for Strict Pitch Measurements Using Scanning Probe Microscopes

2008 ◽  
Vol 381-382 ◽  
pp. 605-606
Author(s):  
Kentaro Sugawara ◽  
Osamu Sato ◽  
K. Yoshizaki ◽  
Ichiko Misumi ◽  
S. Gonda

An innovative two-dimensional (2D) grating was designed for precision pitch measurement using an atomic force microscope with laser interferometers (DLI-AFM). Two kinds of 2D gratings, cylindrical and octagonal pattern, were investigated and compared. In pitch analyses of these patterns, the latter octagonal pattern showed smaller fluctuation of pitch values, less than 0.1 nm. Therefore, one of the major uncertainty components, filtering parameter, was reduced dramatically. We propose the octagonal pattern is probably the most preferable pattern for accurate calibration on 2D gratings.

Author(s):  
Hung-Sung Lin ◽  
Mong-Sheng Wu

Abstract The use of a scanning probe microscope (SPM), such as a conductive atomic force microscope (C-AFM) has been widely reported as a method of failure analysis in nanometer scale science and technology [1-6]. A beam bounce technique is usually used to enable the probe head to measure extremely small movements of the cantilever as it is moved across the surface of the sample. However, the laser beam used for a beam bounce also gives rise to the photoelectric effect while we are measuring the electrical characteristics of a device, such as a pn junction. In this paper, the photocurrent for a device caused by photon illumination was quantitatively evaluated. In addition, this paper also presents an example of an application of the C-AFM as a tool for the failure analysis of trap defects by taking advantage of the photoelectric effect.


2006 ◽  
Vol 45 (11) ◽  
pp. 8832-8838 ◽  
Author(s):  
Ken Murayama ◽  
Satoshi Gonda ◽  
K. Kinoshita ◽  
Hajime Koyanagi ◽  
Tsuneo Terasawa ◽  
...  

1999 ◽  
Vol 584 ◽  
Author(s):  
A. Notargiacomo ◽  
E. Giovine ◽  
E. Cianci ◽  
V. Foglietti ◽  
F. Evangelisti

AbstractScanning probe assisted nanolithography is a very attractive technique in terms of low-cost, patterning resolution and positioning accuracy. Our approach makes use of a commercial atomic force microscope and silicon probes to build simple nanostructures, such as metal electrode pairs, for application in novel quantum devices.Sub-100 nm patterning was successfully performed using three different techniques: direct material removal, scanning probe assisted mask patterning and local oxidation.


2017 ◽  
Vol 5 (4) ◽  
Author(s):  
E. B. Brousseau ◽  
S. Thiery ◽  
B. Arnal ◽  
E. Nyiri ◽  
O. Gibaru ◽  
...  

This paper reports a feasibility study that demonstrates the implementation of a computer-aided design and manufacturing (CAD/CAM) approach for producing two-dimensional (2D) patterns on the nanoscale using the atomic force microscope (AFM) tip-based nanomachining process. To achieve this, simple software tools and neutral file formats were used. A G-code postprocessor was also developed to ensure that the controller of the AFM equipment utilized could interpret the G-code representation of tip path trajectories generated using the computer-aided manufacturing (CAM) software. In addition, the error between a machined pattern and its theoretical geometry was also evaluated. The analyzed pattern covered an area of 20 μm × 20 μm. The average machined error in this case was estimated to be 66 nm. This value corresponds to 15% of the average width of machined grooves. Such machining errors are most likely due to the flexible nature of AFM probe cantilevers. Overall, it is anticipated that such a CAD/CAM approach could contribute to the development of a more flexible and portable solution for a range of tip-based nanofabrication tasks, which would not be restricted to particular customised software or AFM instruments. In the case of nanomachining operations, however, further work is required first to generate trajectories, which can compensate for the observed machining errors.


Author(s):  
C. Miyasaka ◽  
B. R. Tittmann ◽  
T. Adachi ◽  
A. Yamaji

When the Ultrasonic-Atomic Force Microscope (U-AFM) is used to form an image of a surface of a specimen having discontinuities, contrast of the specimen in the image is usually stronger than that of an image formed by a conventional Atomic Force Microscope (AFM). In this article, the mechanism of the contrast of the image obtained by the U-AFM was explained by theoretical analysis. A ceramic and metal jointed bar (Steel/Cu/Si3N4) was selected as a specimen for this study. The specimen was located on the surface of a disc transducer generating ultrasonic waves up to 500 KHz, and was vibrated, wherein its first resonant frequency was 133.43 kHz. Both stress and displacement of the specimen were analyzed by classical beam theory and the two-dimensional elasto-dynamic theory. Experimental U-AFM imaging analyses were also carried out to compare the results.


Author(s):  
Deman Tang ◽  
Earl H. Dowell

Dynamic analysis and numerical simulation of a protein-ligand chain structure connected to a moving atomic force microscope (AFM) has been conducted. The elements of the chain are free to extend and rotate relative to each other in a two-dimensional plane. Sinusoidal base excitation of the cantilevered beam of the AFM is considered in some detail. Reduced order (dynamic) models are constructed using global modes for both linear and nonlinear dynamic systems with and without the “nearest neighbor assumption”. The agreement between the original and reduced order models (ROM) is very good even when only one global mode is included in the ROM for either the linear case or for the nonlinear case, provided the excitation frequency is lower than the fundamental natural frequency of the linear system. For higher excitation frequencies, more global modes are required. The computational advantage of the reduced order model is clear from the results presented.


Sign in / Sign up

Export Citation Format

Share Document