A nano-metrology system with a two-dimensional combined optical and X-ray interferometer and an atomic force microscope

2009 ◽  
Vol 15 (12) ◽  
pp. 1879-1884 ◽  
Author(s):  
Jinwon Park ◽  
Moo-Yeon Lee ◽  
Dong-Yeon Lee
2016 ◽  
Vol 23 (5) ◽  
pp. 1110-1117 ◽  
Author(s):  
M. V. Vitorino ◽  
Y. Fuchs ◽  
T. Dane ◽  
M. S. Rodrigues ◽  
M. Rosenthal ◽  
...  

A compact high-speed X-ray atomic force microscope has been developed forin situuse in normal-incidence X-ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X-ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X-ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012100
Author(s):  
M N A Uda ◽  
Subash C B Gopinath ◽  
Uda Hashim ◽  
M N Afnan Uda ◽  
N A Parmin ◽  
...  

Abstract The aim of this research is to study the morphological analysis of fabricated Interdigitated Electrode (IDE). This device electrode was physically characterized using 3D nano profiler, scanning electrode microscope (SEM), Energy-dispersive X-ray spectroscopy (EDX) and Atomic Force Microscope (AFM). Based on this analysis, IDE pattern was analyzed thoroughly based on the IDE pattern specifications with 5 μM finger gap and this research significantly will stand as a platform quantify the biomolecules in further analysis.


1999 ◽  
Vol 572 ◽  
Author(s):  
Stefan Zollner ◽  
Atul Konkar ◽  
R. B. Gregory ◽  
S. R. Wilson ◽  
S. A. Nikishin ◽  
...  

ABSTRACTWe measured the ellipsometric response from 0.7–5.4 eV of c-axis oriented AlN on Si (111) grown by molecular beam epitaxy. We determine the film thicknesses and find that for our AlN the refractive index is about 5–10% lower than in bulk AlN single crystals. Most likely, this discrepancy is due to a low film density (compared to bulk AlN), based on measurements using Rutherford backscattering. The films were also characterized using atomic force microscopy and x-ray diffraction to study the growth morphology. We find that AlN can be grown on Si (111) without buffer layers resulting in truely two-dimensional growth, low surface roughness, and relatively narrow x-ray peak widths.


2007 ◽  
Vol 14 (03) ◽  
pp. 439-444 ◽  
Author(s):  
Z. H. SUN ◽  
D. XU ◽  
G. W. YU ◽  
G. H. ZHANG ◽  
X. Q. WANG ◽  
...  

Single crystals of nonlinear optical material, L-arginine trifluoroacetate (abbreviated as LATF), were grown from an aqueous solution by the low temperature solution growth method. The cell parameters of the grown crystal were determined by the X-ray powder diffraction analysis. Atomic force microscopy (AFM) was used to investigate the surface morphology of {101} cleavage faces of LATF. Straight steps and two-dimensional nuclei were observed. Liquid inclusions and impurities as defects for revealing macrosteps were demonstrated. The molecular structure and crystal structure correlative with surface morphology were discussed.


1998 ◽  
Vol 05 (01) ◽  
pp. 387-392 ◽  
Author(s):  
D. Abriou ◽  
D. Gagnot ◽  
J. Jupille ◽  
F. Creuzet

The growth mode of silver films deposited at room temperature on TiO 2(110) surfaces has been examined by means of atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) in ultrahigh vacuum (UHV) conditions, On clean vacancy-free TiO 2(110) surfaces, 0.1-nm-thick (on average) Ag deposits form a two-dimensional (2D) layer. When the thickness of the silver overlayer is increased, 3D clusters are shown to appear while the 2D film is preserved, furthermore, the influence of surface oxygen vacancies on the growth of Ag/TiO 2(110) is evidenced by well-characterized differences in the morphology of 9-nm-thick silver deposits.


2017 ◽  
Vol 5 (4) ◽  
Author(s):  
E. B. Brousseau ◽  
S. Thiery ◽  
B. Arnal ◽  
E. Nyiri ◽  
O. Gibaru ◽  
...  

This paper reports a feasibility study that demonstrates the implementation of a computer-aided design and manufacturing (CAD/CAM) approach for producing two-dimensional (2D) patterns on the nanoscale using the atomic force microscope (AFM) tip-based nanomachining process. To achieve this, simple software tools and neutral file formats were used. A G-code postprocessor was also developed to ensure that the controller of the AFM equipment utilized could interpret the G-code representation of tip path trajectories generated using the computer-aided manufacturing (CAM) software. In addition, the error between a machined pattern and its theoretical geometry was also evaluated. The analyzed pattern covered an area of 20 μm × 20 μm. The average machined error in this case was estimated to be 66 nm. This value corresponds to 15% of the average width of machined grooves. Such machining errors are most likely due to the flexible nature of AFM probe cantilevers. Overall, it is anticipated that such a CAD/CAM approach could contribute to the development of a more flexible and portable solution for a range of tip-based nanofabrication tasks, which would not be restricted to particular customised software or AFM instruments. In the case of nanomachining operations, however, further work is required first to generate trajectories, which can compensate for the observed machining errors.


Author(s):  
C. Miyasaka ◽  
B. R. Tittmann ◽  
T. Adachi ◽  
A. Yamaji

When the Ultrasonic-Atomic Force Microscope (U-AFM) is used to form an image of a surface of a specimen having discontinuities, contrast of the specimen in the image is usually stronger than that of an image formed by a conventional Atomic Force Microscope (AFM). In this article, the mechanism of the contrast of the image obtained by the U-AFM was explained by theoretical analysis. A ceramic and metal jointed bar (Steel/Cu/Si3N4) was selected as a specimen for this study. The specimen was located on the surface of a disc transducer generating ultrasonic waves up to 500 KHz, and was vibrated, wherein its first resonant frequency was 133.43 kHz. Both stress and displacement of the specimen were analyzed by classical beam theory and the two-dimensional elasto-dynamic theory. Experimental U-AFM imaging analyses were also carried out to compare the results.


Sign in / Sign up

Export Citation Format

Share Document