Stabilizing Effect of (100) Compound Twinning in NiTi Martensite

2011 ◽  
Vol 465 ◽  
pp. 81-84 ◽  
Author(s):  
P. Šesták ◽  
Miroslav Černý ◽  
Jaroslav Pokluda

According to experimental findings, the martensite structure of NiTi is monoclinic (B19'). However, previous first principles calculations have shown that, after a full optimization of the lattice, the ideal martensite structure relaxed into orthorhombic B33 structure. Present calculations reveal that a presence of twins in a real martensite can stabilize the B19' structure.

1990 ◽  
Vol 193 ◽  
Author(s):  
Efthimios Kaxiras

ABSTRACTThe possibility of passivating the Si(100) surface by adsorption of Group-VI atoms (S and Se) is investigated through first-principles calculations. The structure of the ideal (1×1) configuration with the Si surface dangling bonds saturated by full monolayer coverage is examined in detail. The Group-VI adsorbates form covalent bonds to the substrate with bond-lengths very close to the sums of the covalent radii. The bond-angles are larger than in bulk configurations of the Group-VI elements. The ideal (1×1) configuration gives rise to a surface electronic state with large dispersion spanning the entire band-gap of Si. Deviations from this configuration by in-phase or out-of-phase tilting of the adsorbate atoms result in energy costs which can give qualitative information on the relative strength of adsorbate-adsorbate and adsorbate-substrate interactions.


2010 ◽  
Vol 1246 ◽  
Author(s):  
Massimo Camarda ◽  
pietro delugas ◽  
Andrea Canino ◽  
Andrea Severino ◽  
nicolo piluso ◽  
...  

AbstractShockley-type Stacking faults (SSF) in hexagonal Silicon Carbide polytypes have received considerable attention in recent years since it has been found that these defects are responsible for the degradation of forward I-V characteristics in p-i-n diodes. In order to extend the knowledge on these kind of defects and theoretically support experimental findings (specifically, photoluminescence spectral analysis), we have determined the Kohn-Sham electronic band structures, along the closed path Γ-M-K-Γ, using density functional theory. We have also determined the energies of the SSFs with respect to the perfect crystal finding that the (35) and (44) SSFs have unexpectedly low formation energies, for this reason we could expect these two defects to be easily generated/expanded either during the growth or post-growth process steps.


2007 ◽  
Vol 551-552 ◽  
pp. 331-336 ◽  
Author(s):  
Tokuteru Uesugi ◽  
Y. Inoue ◽  
Yorinobu Takigawa ◽  
Kenji Higashi

The grain boundary surface is the excess energy of the grain boundary as the lattice on one side of the grain is translated relative to the lattice on the other side of the grain. The maximum in the slope of the grain boundary surface determines the ideal shear strength for the grain boundary sliding. We presented the ideal shear strength for the grain boundary sliding in aluminum Σ3(11 2)[110] tilt grain boundary from the first-principles calculations. The ideal shear strength for the grain boundary sliding was much smaller than the ideal shear strength of a perfect single crystal.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hisao Nakamura ◽  
Johannes Hofmann ◽  
Nobuki Inoue ◽  
Sebastian Koelling ◽  
Paul M. Koenraad ◽  
...  

AbstractThe interface between topological and normal insulators hosts metallic states that appear due to the change in band topology. While topological states at a surface, i.e., a topological insulator-air/vacuum interface, have been studied intensely, topological states at a solid-solid interface have been less explored. Here we combine experiment and theory to study such embedded topological states (ETSs) in heterostructures of GeTe (normal insulator) and $$\hbox {Sb}_2$$ Sb 2 $$\hbox {Te}_3$$ Te 3 (topological insulator). We analyse their dependence on the interface and their confinement characteristics. First, to characterise the heterostructures, we evaluate the GeTe-Sb$$_2$$ 2 Te$$_3$$ 3 band offset using X-ray photoemission spectroscopy, and chart the elemental composition using atom probe tomography. We then use first-principles to independently calculate the band offset and also parametrise the band structure within a four-band continuum model. Our analysis reveals, strikingly, that under realistic conditions, the interfacial topological modes are delocalised over many lattice spacings. In addition, the first-principles calculations indicate that the ETSs are relatively robust to disorder and this may have practical ramifications. Our study provides insights into how to manipulate topological modes in heterostructures and also provides a basis for recent experimental findings [Nguyen et al. Sci. Rep. 6, 27716 (2016)] where ETSs were seen to couple over thick layers.


2013 ◽  
Vol 749 ◽  
pp. 569-576 ◽  
Author(s):  
Shang Yi Ma ◽  
Li Min Liu ◽  
Shao Qing Wang

The local structures of Zn and Y in the long period stacking order (LPSO) phase in Mg-Zn-Y system were investigated by first principles calculations in details. The clustering of Zn and Y atoms ranging from single stacking fault layer to four consecutive layers was explicitly demonstrated. The calculations indicate that Zn and Y atoms prefer clustering in the form of Zn6Y9 embedding in ABCA-type building block to the random or ordered arrangements of Zn and Y atoms being enriched in two stacking fault layers. The cluster of Zn6Y9 can be regarded as the ideal stoichiometric component of LPSO and it plays a predominant role in the LPSO phases. The formation of LPSO phases is highly associated with the Zn6Y9 cluster and its derivatives.


2019 ◽  
Vol 75 (2) ◽  
pp. 260-272 ◽  
Author(s):  
Paul Benjamin Klar ◽  
Iñigo Etxebarria ◽  
Gotzon Madariaga

The benefit of computational methods applying density functional theory for the description and understanding of modulated crystal structures is investigated. A method is presented which allows one to establish, improve and test superspace models including displacive and occupational modulation functions from first-principles calculations on commensurate structures. The total energies of different configurations allow one to distinguish stable and less stable structure models. The study is based on a series of geometrically optimized superstructures of mullite (Al4+2x Si2−2x O10−x ) derived from the superspace group Pbam(α0½)0ss. Despite the disordered and structurally complex nature of mullite, the calculations on ordered superstructures are very useful for determining the ideal Al/Si ordering in mullite, extracting atomic modulation functions as well as understanding the SiO2–Al2O3 phase diagram. The results are compared with experimentally established models which confirm the validity and utility of the presented method.


Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 787 ◽  
Author(s):  
Karine Gouriet ◽  
Philippe Carrez ◽  
Patrick Cordier

The ultimate mechanical properties, as characterized here by the ideal strengths of Mg2SiO4 forsterite, have been calculated using first-principles calculations and generalized gradient approximation under tensile and shear loading. The ideal tensile strengths (ITS) and ideal shear strengths (ISS) are computed by applying homogeneous strain increments along high-symmetry directions ([100], [010], and [001]) and low index shear plane ((100), (010), and (001)) of the orthorhombic lattice. We show that the ultimate mechanical properties of forsterite are highly anisotropic, with ITS ranging from 12.1 GPa along [010] to 29.3 GPa along [100], and ISS ranging from 5.6 GPa for simple shear deformation along (100) to 11.5 GPa for shear along (010).


2018 ◽  
Vol 73 (10) ◽  
pp. 939-945
Author(s):  
Chenyang Zhao ◽  
Qun Wei ◽  
Haiyan Yan ◽  
Bing Wei

AbstractThe structural, mechanical, electronic properties and stability of body-centered-tetragonal C8 (Bct-C8) were determined by using the first-principles calculations. Bct-C8 is identified to be mechanically and dynamically stable at a pressure range from 0 to 100 GPa. The elastic anisotropy, average acoustic velocity and Debye temperature of Bct-C8 at ambient and high pressures were studied. The ideal stresses at large strains of Bct-C8 were examined; the results showed that it would cleave under the tensile strength of 72 GPa or under the shear strength of 70 GPa, indicating that Bct-C8 is a potential superhard material.


Sign in / Sign up

Export Citation Format

Share Document