A Research on the Trinity Mechanism of Atomization Based on Centrifugation Oscillation and Impact Breakage

2011 ◽  
Vol 467-469 ◽  
pp. 589-592
Author(s):  
Feng Luo ◽  
Ke Qiu

The paper advances a new atomization mechanism combining the centrifugal, the oscillating and the impact breakage atomization as a trinity, breaking through the traditionally single atomization model. The atomization mechanism raised here makes full use of the comprehensive effects of the centrifugal atomization, the oscillating atomization and the impact breakage atomization, synthesizing the superiorities of the three as an organic and powerfully efficient whole, and making their mutual reactions stronger step by step. Among the three, the impact breakage atomization is a new auxiliary mechanism, which can considerably improve the droplet’s atomizing process after the centrifugal and the oscillating atomization, producing much better an atomizing result. It is very convenient, simple and direct to fulfill “the-three-in-one”. This atomization mechanism not only can achieve the goal of even atomization and much tinier droplets, but can be energy-efficient with low cost and less labor intensity as well. Therefore it is a highly practical and useful method.

2012 ◽  
Vol 562-564 ◽  
pp. 502-505
Author(s):  
Ke Qiu ◽  
Feng Luo ◽  
Dong Fang Zhao ◽  
Zhong Lei Li ◽  
Jin Peng Sun

The paper introduces a new atomization mechanism combining the centrifugal, the oscillating and the impact breakage atomization as a trinity, breaking through the traditional single atomization model. The atomization mechanism here makes full use of the comprehensive effects of the centrifugal atomization, the oscillating atomization and the impact breakage atomization, synthesizing the superiorities of the three as an organic and powerfully efficient whole, and making their mutual reactions stronger step by step. The impact breakage atomization is a new auxiliary mechanism among the three, which can improve the atomizing process of droplets considerably after the centrifugal and the oscillating atomization, producing much better an atomizing result. It is very convenient, simple and direct to fulfill the three-in-one. This atomization mechanism can achieve the goal of even atomization and much tinier droplets and be energy-efficient with low cost as well. Therefore it is a highly practical and useful method.


2013 ◽  
Vol 815 ◽  
pp. 807-812
Author(s):  
Feng Luo

The atomization mechanism here makes full use of the comprehensive effects of the centrifugal atomization, the oscillating atomization and the impact breakage atomization, synthesizing the superiorities of the three as an organic and powerfully efficient whole, and making their mutual reactions stronger step by step. The impact breakage atomization is a new auxiliary mechanism among the three, which can improve the atomizing process of droplets considerably after the centrifugal and the oscillating atomization, producing much better an atomizing result. It is very convenient, simple and direct to fulfill the three-in-one.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Donghui Yang ◽  
Yixin Zhao ◽  
Zhangxuan Ning ◽  
Zhaoheng Lv ◽  
Huafeng Luo

Drilling and blasting technology is one of the main methods for pressure relief in deep mining. The traditional method for blasting hole blockage with clay stemming has many problems, which include a large volume of transportation, excess loading time, and high labor intensity. An environmentally friendly blast hole plug was designed and developed. This method is cheap, closely blocks the hole, is quickly loaded, and is convenient for transportation. The impact test on the plug was carried out using an improved split Hopkinson pressure bar test system, and the industrial test was carried out in underground tunnel of coal mine. The tests results showed that, compared with clay stemming, the new method proposed in this paper could prolong the action time of the detonation gas, prevent premature detonation gas emissions, reduce the unit consumption of explosives, improve the utilization ratio, reduce the labor intensity of workers, and improve the effect of rock blasting with low cost of rock breaking.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


Author(s):  
J.R. Caradus ◽  
D.A. Clark

The New Zealand dairy industry recognises that to remain competitive it must continue to invest in research and development. Outcomes from research have ensured year-round provision of low-cost feed from pasture while improving productivity. Some of these advances, discussed in this paper, include the use of white clover in pasture, understanding the impacts of grass endophyte, improved dairy cow nutrition, the use of alternative forage species and nitrogen fertiliser to improve productivity, demonstration of the impact of days-in-milk on profitability, and the use of feed budgeting and appropriate pasture management. Keywords: dairy, profitability, research and development


Author(s):  
Nina M. Meshchakova ◽  
Marina P. Dyakovich ◽  
Salim F. Shayakhmetov

Introduction.Methanol and its derivatives occupy one of the leading places among the main organic synthesis intermediates in terms of their importance and scale of production. According to experts, by 2027 the global demand for methanol can reach 135 million tons, the annual growth will be about 5.5%. However, there is little information regarding the assessment of working conditions and occupational risks for workers in modern methanol production and its derivatives.The aim of the studyis hygienic assessment of working conditions and the formation of health risks in workers of modern production of methanol and methylamines.Materials and methods.The assessment of the main adverse factors of production is given. When studying the state of health, objective indicators (the results of an in-depth medical examination) and subjective (the results of a quantitative assessment of the risks of the main pathological syndromes associated with health) are considered.Results.According to long-term observations, the concentration of harmful substances in the air of the working area, indicators of labor severity, parameters of physical factors met hygienic requirements, with the exception of industrial noise exceeding the maximum permissible level, as well as labor intensity of 1 degree. The General assessment of working conditions corresponds to the category of harmful 2 degrees (3.2). According to the results of the medical examination and quantitative assessment of the risks of health disorders in workers, the most significant were functional disorders and diseases of the circulatory system. The levels of somatic pathology on the part of the main body systems were significantly higher in apparatchiks compared to the engineering and technical personnel (ETP).Conclusions:In the production of methyl alcohol and methylamines, the main hygienic importance is the impact on workers of the complex of harmful substances of 1-IV hazard classes in low concentrations, increased levels of industrial noise, labor intensity of 1 degree. According to the subjective assessment of health and medical examination, the greatest prevalence of health risks in workers was observed from the circulatory system, and the levels of the revealed somatic pathology were statistically significantly higher in apparatchiks compared with the ETP.


Author(s):  
Dileep Reddy Bolla ◽  
Jijesh J J ◽  
Mahaveer Penna ◽  
Shiva Shankar

Back Ground/ Aims:: Now-a-days in the Wireless Communications some of the spectrum bands are underutilized or unutilized; the spectrum can be utilized properly by using the Cognitive Radio Techniques using the Spectrum Sensing mechanisms. Objectives:: The prime objective of the research work carried out is to achieve the energy efficiency and to use the spectrum effectively by using the spectrum management concept and achieve better throughput, end to end delay etc., Methods:: The detection of the spectrum hole plays a vital role in the routing of Cognitive Radio Networks (CRNs). While detecting the spectrum holes and the routing, sensing is impacted by the hidden node issues and exposed node issues. The impact of sensing is improved by incorporating the Cooperative Spectrum Sensing (CSS) techniques. Along with these issues the spectrum resources changes time to time in the routing. Results:: All the issues are addressed with An Energy Efficient Spectrum aware Routing (EESR) protocol which improves the timeslot and the routing schemes. The overall network life time is improved with the aid of residual energy concepts and the overall network performance is improved. Conclusion:: The proposed protocol (EESR) is an integrated system with spectrum management and the routing is successfully established to communication in the network and further traffic load is observed to be balanced in the protocol based on the residual energy in a node and further it improves the Network Lifetime of the Overall Network and the Individual CR user, along with this the performance of the proposed protocol outperforms the conventional state of art routing protocols.


2018 ◽  
Vol 32 (2) ◽  
pp. 103-119
Author(s):  
Colleen M. Boland ◽  
Chris E. Hogan ◽  
Marilyn F. Johnson

SYNOPSIS Mandatory existence disclosure rules require an organization to disclose a policy's existence, but not its content. We examine policy adoption frequencies in the year immediately after the IRS required mandatory existence disclosure by nonprofits of various governance policies. We also examine adoption frequencies in the year of the subsequent change from mandatory existence disclosure to a disclose-and-explain regime that required supplemental disclosures about the content and implementation of conflict of interest policies. Our results suggest that in areas where there is unclear regulatory authority, mandatory existence disclosure is an effective and low cost regulatory device for encouraging the adoption of policies desired by regulators, provided those policies are cost-effective for regulated firms to implement. In addition, we find that disclose-and-explain regulatory regimes provide stronger incentives for policy adoption than do mandatory existence disclosure regimes and also discourage “check the box” behavior. Future research should examine the impact of mandatory existence disclosure rules in the year that the regulation is implemented. Data Availability: Data are available from sources cited in the text.


Sign in / Sign up

Export Citation Format

Share Document