Research on Automatic Washing Machine Control System

2011 ◽  
Vol 480-481 ◽  
pp. 1302-1307
Author(s):  
Shou Cheng Ding ◽  
Wen Hui Li ◽  
Shi Zhou Yang

Microprocessors and sensor technology together achieved a fully automatic washing machine based on fuzzy control. System used an integrated mixed-signal system-level C8051F020 microcontroller. The system would detect and reasoning on the amount of washing objects, fabricl quality, water level, reference washing time, the flow intensity, real-time temperature and dirt level of washing liquid, so as to achieve automatically complete the whole washing process. Experiments shows that the system is stable, easy to operate, cost-effective advanced features, so that it has a certain value.

Author(s):  
George Kornaros ◽  
Ioannis Christoforakis ◽  
Othon Tomoutzoglou ◽  
Dimitrios Bakoyiannis ◽  
Kallia Vazakopoulou ◽  
...  

2011 ◽  
Vol 7 (2) ◽  
pp. 147-174
Author(s):  
Steven J. Hoffman ◽  
Lorne Sossin

AbstractAdjudicative tribunals are an integral part of health system governance, yet their real-world impact remains largely unknown. Most assessments focus on internal accountability and use anecdotal methodologies; few, studies if any, empirically evaluate their external impact and use these data to test effectiveness, track performance, inform service improvements and ultimately strengthen health systems. Given that such assessments would yield important benefits and have been conducted successfully in similar settings (e.g. specialist courts), their absence is likely attributable to complexity in the health system, methodological difficulties and the legal environment within which tribunals operate. We suggest practical steps for potential evaluators to conduct empirical impact evaluations along with an evaluation matrix template featuring possible target outcomes and corresponding surrogate endpoints, performance indicators and empirical methodologies. Several system-level strategies for supporting such assessments have also been suggested for academics, health system institutions, health planners and research funders. Action is necessary to ensure that policymakers do not continue operating without evidence but can rather pursue data-driven strategies that are more likely to achieve their health system goals in a cost-effective way.


2015 ◽  
Vol 713-715 ◽  
pp. 539-543
Author(s):  
Yong Zhao ◽  
Xiao Qiang Yang ◽  
Yin Hua Xu ◽  
Jian Bin Li

The fault diagnosis of electrical control system of certain type mine sweeping vehicle is difficult due to its complex structure and advanced technique. So in the multi-sensor failure diagnosis process, as a result of various reasons, such as the existence of measurement noise, diagnosis knowledge incomplete and so on, it makes the fault diagnosis uncertainty and affects the reliability and the accuracy of the diagnosis result. This article according to the analysis of electrical control system's fault characteristic of the mine sweeping plough’s, proposes a technique based on data fusion fault diagnosis method. The diagnosis process is divided into the sub system and the system-level, the subsystem uses the BP neural network to classify the fault mode, the system-level uses the D-S evidence theory carries on the comprehensive decision judgment for the whole system's fault. Application shows if some sub-neural network diagnosis has error, using D-S evidence theory fusion can effectively improve the accuracy of diagnosis.


2017 ◽  
Vol 89 (6) ◽  
pp. 791-796
Author(s):  
Yasser A. Nogoud ◽  
Attie Jonker ◽  
Shuhaimi Mansor ◽  
A.A.A. Abuelnuor

Purpose This paper aims to propose a spreadsheet method for modeling and simulation of a retraction system mechanism for the retractable self-launching system for a high-performance glider. Design/methodology/approach More precisely, the method is based on parametric link design using Excel spreadsheets. Findings This method can be used for kinematic and dynamic analysis, graphical plotting and allows simulation of control kinematics with the ability to make quick and easy parametric changes to a design. It also has the ability to calculate the loads imposed on each component in the control system as a function of input loads and position. Practical implications This paper shows that it is possible to model complex control systems quickly and easily using spreadsheet programs already owned by most small companies. The spreadsheet model is a parametric model, and it gives a simple visual presentation of the control system with interactive movement and control by the user. Originality/value This spreadsheet model in conjunction with a simple CAD program enables the rapid and cost-effective development of control system components.


2011 ◽  
Vol 230-232 ◽  
pp. 178-182
Author(s):  
Bai Xue Fu ◽  
Sheng Hai Hu

Sensor technology and computer control technology are applied to automobile fuel consumption testing in the automobile industry developed countries, the function and precision of the test are developing and perfecting continually. In our country, automobile fuel consumption test mainly applies ordinary consumption test devices, that test item are single-chip, which is applied for testing the flow of time. The display of method mainly based on the pointer instrument and partially on circuit control, so the maintenance and reliability of the test does not excellent. We do research and develop the intelligent one which is called quick testing instrument for automobile fuel consumption, which applies sensor technology, computer control technology and advanced instrument technology, that can be applied for the testing for automobile fuel consumption and data show. It can improve the measurement precision of automobile fuel consumption and degree of automation, with the down cost as high cost-effective consequences. The test instrument can be used for testing instantaneous fuel consumption, average fuel consumption and accumulative total consumption of gasoline engine and diesel engine.


2021 ◽  
Vol 11 (22) ◽  
pp. 11043
Author(s):  
Urs Giger ◽  
Stefan Kleinhansl ◽  
Horst Schulte

New locations for onshore technology, which have not been considered so far, must be developed to increase the total installed capacity of renewable energies, especially wind energy. For this purpose, cost-effective wind turbines, even in difficult-to-access locations, such as mountainous and high-mountainous areas, must be designed. This paper presents a novel wind turbine with a related control system that meets these requirements. The proposed turbine uses a multi-rotor configuration with five rotors arranged in a star shape configuration. Each rotor drive train combines up to 12 generators in a maintenance-friendly multi-generator concept. A suitable observer-based control for load mitigation in the full-load region is proposed for the multi-rotor and multi-generator design. Simulations are used to demonstrate the applicability and practical benefits of this concept.


The paper presents a design and development of a multi-station automated hand-washing system (MSAHWS) that could be integrated into overall solution strategies for combating the threat of SARS-Cov-2 infections and minimizing the health and economic devastation the virus spread can inflict. The researchers seek to create a system that uses a single micro-controller and caters to several users, each of them being served independently of each other. The MSAHWS development follows a four-part methodology: formulation of the sanitary, operational, manufacturing and economic requirements; design, modeling, and simulation of the micro-controller-based control system; MSAHWS hardware prototype development; and system test and data collection. The MSAHWS design and development focuses on a double-station system that uses a single Arduino Uno, an ultrasonic sensor for each station, 4 FET’s, 4 liquid pumps, a water tank, a soap reservoir, a power supply and a frame to house the system. The non-contact system eliminates possible viral transmission from one person to another via the hand washing machine yet ensures the required cleanliness of the hands. The system is first simulated in PROTEUS to test its functionality and responses based on the demanded or required criteria. A prototype is then built to test and verify the system’s actual operation and responses and thence to make the necessary adjustment of parameters to realize an acceptable performance level. Tests show that all the requirements are met. Photos of the built and tested prototype, a diagram of the initial system design concept, a screen capture of the control system software model, a schematic diagram of the control system, a sketch with dimensions of the hand washing machine frame or housing, and the flowchart on which the Arduino script is developed. The operation and user-interaction of the actual system is also described. The control system program is written such that the resulting hand washing activity complies with the WHO standard on hand washing duration and makes entirely possible a complete and hygienic hand washing activity with soap and water. The system is envisioned for strategic deployment in public and private areas like public markets, banks, hospitals, schools, offices, residences, and many others. Revised Manuscript Received on August 05, 2020. * Correspondence Author Jolan Baccay Sy, School of Electrical and Computer Engineering, Wollo University, Kombolcha Institute of Technology, Kombolcha Ethiopia. E-mail: [email protected] Marlon Gan Rojo School of Electrical and Computer Engineering, Wollo University, Kombolcha Institute of Technology, Kombolcha Ethiopia. Email: [email protected] Eunelfa Regie Calibara School of Electrical and Computer Engineering, Wollo University, Kombolcha Institute of Technology, Kombolcha Ethiopia. E-mail: [email protected] Alain Vincent Comendador, School of Mechanical and Chemical Engineering, Wollo University, Kombolcha Institute of Technology, Kombolcha, Ethiopia. Email: [email protected] Wubishet Degife School of Mechanical and Chemical Engineering, Wollo University Kombolcha Institute of Technology, Kombolcha, Ethiopia. E-mail: [email protected] Asefa Sisay Yimer Lecturer, Department of Electrical and Computer Engineering, Kombolcha Institute of Technology, Wollo University, Ethiopia. The paper has shown that it is possible to control multiple hand washing stations, each acting independently of each other, using a single micro-controller and a proper control system programming.


Sign in / Sign up

Export Citation Format

Share Document