Fatigue Life Prediction Investigation on Steel Honeycomb Sandwich Beams at High-Temperature

2011 ◽  
Vol 488-489 ◽  
pp. 698-701
Author(s):  
Jie Lu ◽  
Guang Ping Zou ◽  
Yang Cao

The aim of this work is to investigate the fatigue behaviors of the steel honeycomb sandwich beams at 400°C through three point bending experiments. A stiffness reduction approach was adopted which was further based on the interpolation by the empirical functions of experimental results. For load control fatigue experiments, the evolution relations between number of cycles and displacement were obtained through real-time deformation monitoring of the specimens. A method based on exponential function fit was adopted in the further analysis, whose coefficients depended on the material properties, loading levels and high temperature conditions. This approach allowed us to predict the high temperature fatigue life of specimens while avoiding a large number of experiments. The results showed that experimental and prediction results were in a good agreement.

2010 ◽  
Vol 452-453 ◽  
pp. 557-560
Author(s):  
Jie Lu ◽  
Guang Ping Zou ◽  
Bao Jun Liu

In this work the fracture process of steel honeycomb sandwich beams has been investigate by situ acoustic emission(AE) technique. Pre-cracks were made both for L-direction and W-direction specimens subjected to out-plane three-points bending loads. Damage initiation sites were observed in the vicinity of the crack tip. A series of curves among the AE counts, AE hits, AE amplitude, AE energy and loading time were obtained. Damage characteristics were discussed based on the above parameters. The results indicate AE characteristic parameters can reflect the damage and failure process of specimens. A good agreement was found between the experimental and analytical results.


2011 ◽  
Vol 675-677 ◽  
pp. 685-688
Author(s):  
Jie Lu ◽  
Guang Ping Zou ◽  
Bao Jun Liu

Honeycomb sandwich structures are generally designed to carry flexural loads. However, mechanical properties can be influenced by accidental impacts, or service conditions. Thus a nondestructive detection testing is desired for them. In contrast to many conventional nondestructive evaluation (NDE) techniques, acoustic emission (AE) technique permits continuous damage inspection, classification and identification of failure modes in real time. In this work the fracture process of steel honeycomb sandwich beams has been investigated by in-situ AE technique. Pre-cracks were made both for L-direction and W-direction specimens subjected to three-points bending loads. Damage initiation sites were observed in the vicinity of the crack tip. A series of curves among the AE hits, AE amplitude, AE energy and loading time were obtained. Damage characteristics were discussed based on the above parameters. The results indicate AE characteristic parameters can reflect the damage and failure process of specimens. A good agreement was found between the experimental and analytical results.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Juraj Belan ◽  
Lenka Kuchariková ◽  
Eva Tillová ◽  
Mária Chalupová

A polycrystalline alpha-beta TiAl6V4 alloy in the annealed condition was used for the three-point bending fatigue test at frequency f∼100 Hz. The static preload Fstat. = −15 kN and variable dynamic force Fdyn. = −7 kN to −13.5 kN were set as fatigue test loading parameters. The fatigue life S-N curve presented the stress amplitude σa as a function of a number of cycles to fracture Nf. A limiting number of cycles to run out of 2.0 × 107 cycles were chosen for the 3-point fatigue tests of rectangular specimens. In addition, the Smith diagram was used to predict the fatigue life. The alpha lamellae width has a significant influence on fatigue life. It is assumed that the increasing width of alpha lamellae decreases fatigue life. A comparison of fatigue results with given alpha lamellae width in our material to the results of other researchers was performed. The SEM fractography was performed with an accent to reveal the initiation sites of crack at low and high load stresses and mechanism of crack propagation for the fatigue part of fracture.


2011 ◽  
Vol 78 (3) ◽  
Author(s):  
B. P. Russell ◽  
T. Liu ◽  
N. A. Fleck ◽  
V. S. Deshpande

Sandwich beams comprising identical face sheets and a square honeycomb core were manufactured from carbon fiber composite sheets. Analytical expressions were derived for four competing collapse mechanisms of simply supported and clamped sandwich beams in three-point bending: core shear, face microbuckling, face wrinkling, and indentation. Selected geometries of sandwich beams were tested to illustrate these collapse modes, with good agreement between analytic predictions and measurements of the failure load. Finite element (FE) simulations of the three-point bending responses of these beams were also conducted by constructing a FE model by laying up unidirectional plies in appropriate orientations. The initiation and growth of damage in the laminates were included in the FE calculations. With this embellishment, the FE model was able to predict the measured load versus displacement response and the failure sequence in each of the composite beams.


2019 ◽  
Vol 29 (3) ◽  
pp. 482-502 ◽  
Author(s):  
JY Jang ◽  
M Mehdizadeh ◽  
MM Khonsari

A new nondestructive method to estimate the remaining fatigue life of a fatigue specimen with unknown knowledge of the loading history is presented. It requires only one short-time excitation test. The method utilizes the concept of damage parameter and the temperature rise to reliably predict the remaining number of cycles before fracture. A generalized procedure and numerous experimentally verified examples are presented. It is shown that the method can be applied to both constant and variable stress levels. Extensive laboratory tests reveal that the results of the remaining fatigue life predictions are in very good agreement with measurements.


2017 ◽  
Vol 34 (4) ◽  
pp. 667-675 ◽  
Author(s):  
Pengbo Su ◽  
Bin Han ◽  
Zhongnan Zhao ◽  
Qiancheng Zhang ◽  
Tian Jian Lu

Author(s):  
Theddeus Tochukwu Akano

Normal oral food ingestion processes such as mastication would not have been possible without the teeth. The human teeth are subjected to many cyclic loadings per day. This, in turn, exerts forces on the teeth just like an engineering material undergoing the same cyclic loading. Over a period, there will be the creation of microcracks on the teeth that might not be visible ab initio. The constant formation of these microcracks weakens the teeth structure and foundation that result in its fracture. Therefore, the need to predict the fatigue life for human teeth is essential. In this paper, a continuum damage mechanics (CDM) based model is employed to evaluate the fatigue life of the human teeth. The material characteristic of the teeth is captured within the framework of the elastoplastic model. By applying the damage evolution equivalence, a mathematical formula is developed that describes the fatigue life in terms of the stress amplitude. Existing experimental data served as a guide as to the completeness of the proposed model. Results as a function of age and tubule orientation are presented. The outcomes produced by the current study have substantial agreement with the experimental results when plotted on the same axes. There is a notable difference in the number of cycles to failure as the tubule orientation increases. It is also revealed that the developed model could forecast for any tubule orientation and be adopted for both young and old teeth.


2021 ◽  
pp. 109963622110338
Author(s):  
Yury Solyaev ◽  
Arseniy Babaytsev ◽  
Anastasia Ustenko ◽  
Andrey Ripetskiy ◽  
Alexander Volkov

Mechanical performance of 3d-printed polyamide sandwich beams with different type of the lattice cores is investigated. Four variants of the beams are considered, which differ in the type of connections between the elements in the lattice structure of the core. We consider the pantographic-type lattices formed by the two families of inclined beams placed with small offset and connected by stiff joints (variant 1), by hinges (variant 2) and made without joints (variant 3). The fourth type of the core has the standard plane geometry formed by the intersected beams lying in the same plane (variant 4). Experimental tests were performed for the localized indentation loading according to the three-point bending scheme with small span-to-thickness ratio. From the experiments we found that the plane geometry of variant 4 has the highest rigidity and the highest load bearing capacity in the static tests. However, other three variants of the pantographic-type cores (1–3) demonstrate the better performance under the impact loading. The impact strength of such structures are in 3.5–5 times higher than those one of variant 4 with almost the same mass per unit length. This result is validated by using numerical simulations and explained by the decrease of the stress concentration and the stress state triaxiality and also by the delocalization effects that arise in the pantographic-type cores.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2171
Author(s):  
Armin Yousefi ◽  
Ahmad Serjouei ◽  
Reza Hedayati ◽  
Mahdi Bodaghi

In the present study, the fatigue behavior and tensile strength of A6061-T4 aluminum alloy, joined by friction stir spot welding (FSSW), are numerically investigated. The 3D finite element model (FEM) is used to analyze the FSSW joint by means of Abaqus software. The tensile strength is determined for FSSW joints with both a probe hole and a refilled probe hole. In order to calculate the fatigue life of FSSW joints, the hysteresis loop is first determined, and then the plastic strain amplitude is calculated. Finally, by using the Coffin-Manson equation, fatigue life is predicted. The results were verified against available experimental data from other literature, and a good agreement was observed between the FEM results and experimental data. The results showed that the joint’s tensile strength without a probe hole (refilled hole) is higher than the joint with a probe hole. Therefore, re-filling the probe hole is an effective method for structures jointed by FSSW subjected to a static load. The fatigue strength of the joint with a re-filled probe hole was nearly the same as the structure with a probe hole at low applied loads. Additionally, at a high applied load, the fatigue strength of joints with a refilled probe hole was slightly lower than the joint with a probe hole.


Sign in / Sign up

Export Citation Format

Share Document