Fabrication and Properties of CaAl12O19-Al2O3 Composite Ceramics

2012 ◽  
Vol 512-515 ◽  
pp. 539-542 ◽  
Author(s):  
Xue Yin Liu ◽  
Yan Gai Liu ◽  
De Xin Yang ◽  
Ding Yun Ye ◽  
Zhao Hui Huang ◽  
...  

CaAl12O19-Al2O3 composite ceramics were synthesized by in situ solid state reaction using CaCO3 and industrial α-Al2O3 powders. The effects of sintering temperature and ratio of CA6 (CaAl12O19) content on phases and microstructure of the final composite ceramics were studied by XRD and SEM. The result showed that sheet-like CA6 appeared in the materials when sintering temperature was higher than 1400°C and grew up with the increased of the sintering temperature. The optimum sintering temperature was 1600°C, when the sample containing 20wt% CA6 was sintered at 1600°C, the bulk density was 3.21g/cm3, the apparent porosity achieved 9.94% and the bending strength gained 149.88MPa. With the increasing of CA6 content in the final composite ceramics, the bulk density and the bending strength increased firstly and then decreased. The lowest apparent porosity 1.42%, a density of 3.60g/cm3 and the highest bending strength of 265.10MPa were achieved for the sample containing 10wt% CA6 sintered at 1600°C.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Juntong Huang ◽  
Zhaohui Huang ◽  
Shaowei Zhang ◽  
Minghao Fang ◽  
Yan’gai Liu

Si3N4-SiCpcomposites reinforced byin situcatalytic formed nanofibers were prepared at a relatively low sintering temperature. The effects of catalyst Co on the phase compositions, microstructures, and physicochemical-mechanical properties of samples sintered at 1350°C–1450°C were investigated. The results showed that the catalyst Co enhanced the nitridation of Si. With the increase of Co addition (from 0 wt% to 2.0 wt.%), the apparent porosity of as-prepared refractories was initially decreased and subsequently increased, while the bulk density and the bending strength exhibited an opposite trend. TheSi3N4-SiCpcomposites sintered at 1400°C had the highest strength of 60.2 MPa when the Co content was 0.5 wt.%. The catalyst Co facilitated the sintering ofSi3N4-SiCpcomposites as well as the formation of Si3N4nanofibers which exhibited network connection and could improve their strength.


2014 ◽  
Vol 602-603 ◽  
pp. 628-631
Author(s):  
Xing Yong Gu ◽  
Ping Li ◽  
Wei Xia Dong ◽  
Ting Luo

Two types of mullite-Al2O3 composites were designed and sintered in situ from different composition containing Al composites e.g. kaolin, alumina hydroxide and calcined bauxite etc, and auxiliary additives. The phase composition and microstructure were studied using X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. Bulk density, apparent porosity, thermal expansion coefficient and bending strength were also measured. The two samples exhibited XRD reflections characteristic of alumina and mullite phases. The amount of these phases depended on starting batch compositions, and reaction of starting and auxiliary materials together to form mullite. Because of in-situ formation of mullite fiber, the bulk density and bending strength were improved and apparent porosity was decreased for the composites with uniform microstructure. The presence of high mullite phase was found to decrease the thermal expansion coefficient. The potential effect of these morphologies and phase on properties was discussed. These mullite-Al2O3 composite was expected to have major applications in the areas of refractory material.


2013 ◽  
Vol 675 ◽  
pp. 200-204
Author(s):  
Fei Shi ◽  
Peng Cheng Du ◽  
Jing Xiao Liu ◽  
Ji Wei Wu ◽  
De Qing Chen ◽  
...  

The Mg2SiO4-MgTiO3-CaTiO3 composite dielectric ceramics with different Mg2SiO4 addition amounts were prepared by solid state reaction method. The effects of Mg2SiO4 addition amounts on the microstructure and dielectric properties as well as sintering temperature of xMg2SiO4-(0.95-x)MgTiO3-0.05CaTiO3 (abbreviated as xMSTC, 0.25≦x≦0.75) composite ceramics were investigated. The results indicated that the sintering temperature of MgTiO3-CaTiO3 based ceramics with Mg2SiO4 addition could be lowered effectively to 1320~1340°C, and the dielectric constant decreased and dielectric loss increased gradually with the increase of Mg2SiO4 content. The 0.45MSTC ceramics containing 45 wt% Mg2SiO4 and sintered at 1340°C showed desirable dielectric properties with dielectric constant εr=13.3,dielectric loss tanδ=4.5×10-4 and temperature coefficient of relative permittivity τε =10 ppm/°C.


2011 ◽  
Vol 239-242 ◽  
pp. 1243-1247
Author(s):  
Xiu Mei Feng ◽  
Xiao Qing Lian ◽  
Ming Xue Jiang ◽  
Yi Ner He

Al2O3-Ti(C,N)composite ceramics were prepared by in situ aluminothermic reduction and pressureless sintering. The effects of different Ti(C,N) contents and sintering temperatures on microstructure and mechanical properties (bulk density ,apparent porosity and blending strength)of samples were investigated through experiments.The results show that Al2O3-Ti(C,N) composite ceramics with 10 wt.% Ti(C,N) prepared using titanium dioxide and metal aluminum powder as raw materials and sintered at 1300 °C for 3h under a flowing nitrigen stream have good properties ,with bulk density 2.94g/cm3,apparent porosity 26.4%, and blending strength reaches to 28.04 MPa. According to the microstructure analysis,the fine in situ synthesis Ti(C,N) particles are uniformly dispersed in tabular alundum matrix. Ti(C,N) and tabular alundum phases are closely combined and can inhibit grain growth each other,which is benefical in improving the comprehensive properties of composite ceramics.


2017 ◽  
Vol 726 ◽  
pp. 399-403 ◽  
Author(s):  
Shi Hua Liu ◽  
Peng Chen ◽  
Dan Hua Xu ◽  
Qing Dan Yuan

Fused silica ceramics, named fused silica articles by means of ceramics fabrication processes, had been widely used in metallurgy, refractory, aviation and many other areas. How to get fused silica ceramics with high density and less cristobalite is on the focus. In this paper, effects of sintering temperature (1150°C, 1200°C, 1250°C, 1300°C, 1350°C) on phases, microstructures and properties of fused silica ceramics were investigated. The results showed that the bulk density of samples increased and the apparent porosity of samples minished gradually, with the increase of sintering temperature. However, the bending strength increased to maximum firstly and then decreased because the emergency of cristobalite at 1300°C. When the sintering temperature was 1250°C, the bulk density, apparent porosity and bending strength was 1.71g·cm-3, 17.6% and 38.87MPa, respectively.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


2016 ◽  
Vol 675-676 ◽  
pp. 527-530
Author(s):  
Thanatep Phatungthane ◽  
Kachaporn Sanjoom ◽  
Denis Russell Sweatman ◽  
Buagun Samran ◽  
Chamnan Randorn ◽  
...  

In the present work, strontium iron niobate SrFe0.5Nb0.5O3 ceramics doped with aluminum were synthesized by a solid-state reaction technique. Phase formation investigation by X-ray diffraction technique (XRD) revealed that all ceramics exhibited pure perovskite phase with orthorhombic symmetry. Grain size observed by electron microscopy (SEM) was found to increase with increasing sintering temperature. The electrical properties and related parameters of the ceramics were also measured. The ceramics exhibit very good dielectric behavior and have a significant potential for dielectric applications.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bambar Davaasuren ◽  
Qianli Ma ◽  
Alexandra von der Heiden ◽  
Frank Tietz

Abstract Li1.5Al0.5Ti1.5(PO4)3 (LATP) powders were prepared from different NO x -free precursors using an aqueous-based solution-assisted solid-state reaction (SA-SSR). The sintering behavior, phase formation, microstructure and ionic conductivity of the powders were explored as a function of sintering temperature. The powders showed a relatively narrow temperature windows in which shrinkage occurred. Relative densities of 95% were reached upon heating between 900 and 960 °C. Depending on the morphological features of the primary particles, either homogeneous and intact microstructures with fine grains of about <2 µm in size or a broad grain size distribution, micro-cracks and grain cleavages were obtained, indicating the instability of the microstructure. Consequently, the ceramics with a homogeneous microstructure possessed a maximum total ionic conductivity of 0.67 mS cm−1, whereas other ceramics reached only 0.58 mS cm−1 and 0.21 mS cm−1.


Sign in / Sign up

Export Citation Format

Share Document