Friction of Thin Electroless NiP and NiP-SiO2 Coatings on Aluminium Alloy Substrate

2012 ◽  
Vol 527 ◽  
pp. 92-97 ◽  
Author(s):  
Nikolai K. Myshkin ◽  
Andrei Ya. Grigoriev ◽  
Dzmitry M. Gutsev

Thin NiP and NiP+SiO2 coatings were deposited by electroless techniques on aluminum alloy plates. Dry sliding tests against Al2O3 counterbody with the ball on plate contact geometry and reciprocal moving were carried out. The results of tribological tests showed that the friction coefficient of the modified coating at loads above 500 mN by 3-4 times, and wear 1.4-2 times lower than for original NiP coatings. It was found that during friction of NiP and NiP+SiO2 coatings different tribochemical processes are realized. These processes lead to the formation of different by chemical composition of P, Ni and O of secondary structures on the friction surfaces and as result to different tribological properties of the investigated coatings.

2018 ◽  
Vol 18 (18) ◽  
pp. 18-23 ◽  
Author(s):  
Sandra Veličković ◽  
Slavica Miladinović ◽  
Blaža Stojanović ◽  
Ružica R. Nikolić ◽  
Branislav Hadzima ◽  
...  

Abstract Hybrid materials with the metal matrix are important engineering materials due to their outstanding mechanical and tribological properties. Here are presented selected tribological properties of the hybrid composites with the matrix made of aluminum alloy and reinforced by the silicon carbide and graphite particles. The tribological characteristics of such materials are superior to characteristics of the matrix – the aluminum alloy, as well as to characteristics of the classical metal-matrix composites with a single reinforcing material. Those characteristics depend on the volume fractions of the reinforcing components, sizes of the reinforcing particles, as well as on the fabrication process of the hybrid composites. The considered tribological characteristics are the friction coefficient and the wear rate as functions of the load levels and the volume fractions of the graphite and the SiC particles. The wear rate increases with increase of the load and the Gr particles content and with reduction of the SiC particles content. The friction coefficient increases with the load, as well as with the SiC particles content increase.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Pranav Dev Srivyas ◽  
M.S. Charoo

Advanced composites are the materials of the new generation. Hence, the focus of the study is to determine the tribological properties of the eutectic Al-Si alloy reinforced with (2, 4, 6, 8, and10 wt. %) of n-Al2O3 against chrome-plated steel ball under dry sliding conditions. The novelty of this work is the fabrication of the composite sample with this elemental composition, which is not done before. Spark plasma sintering (SPS) nonconventional fabrication method is used to fabricate advanced composite samples. Friction coefficient (COF) and wear rate of the composite samples were studied under high load, varying from 50 N to 300 N, using the ball-on-disc tribometer configuration, with other parameters such as stroke, frequency, sliding distance, and sliding velocity remaining constant at 2 mm, 30 Hz, 120 meter, and 0.120 m/s, respectively. Reduction in wear volume for the advanced composite was reported in the range 15.45–44.58% compared to the base alloy (eutectic Al-Si alloy). An increase in friction coefficient was reported in the range 28.80–35.65% compared to the base matrix alloy material. It was also reported that the wear rate increases and the friction coefficient of the composite sample decreases with an increase in load for the tribo-pair. It was observed that an increase in the wt. % of reinforcement influences the friction and wear behavior of the composite. Wear mechanism at high load was characterized by plastic deformation, adhesion, delamination, and abrasion wear. For pre- and postcharacterization of surface and worn tracks, scanning electron microscopy (SEM) electron dispersion spectroscopy (EDS), 3D surface profilometer, and optical microscopy were used. This work aimed to investigate the influence of load on the tribological properties of Al-Si eutectic reinforced n-Al2O3 under dry sliding conditions. Its main objective was to provide a new contribution to the tribological behavior of these composites fabricated using the nonconventional spark plasma sintering method.


2019 ◽  
Vol 32 (1) ◽  
pp. 21-29
Author(s):  
Yuqi Li ◽  
Qiu Zhang ◽  
Hong Ruan ◽  
Fengan Li ◽  
Xu Xu ◽  
...  

To explore the effect of added graphene sheets (GNs) and added perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) on the tribological and mechanical performances of polyimide (PI) matrix, GNs and PTCDA reinforced PI-based composites were synthesized via the blending method. The tribological properties of GNs/PTCDA/PI (GAPI) composites with different weight ratios of GNs and PTCDA under dry sliding, deionized water lubrication, and kerosene lubrication were comparatively investigated. A synergism was found between GNs and PTCDA; this synergism endowed filled PI composites with a lower friction coefficient and showed an improved wear rate under different lubrication conditions, especially when the weight ratio of GNs and PTCDA was 1:1 (GAPI-1). Under dry sliding, deionized water lubrication, and kerosene lubrication, the friction coefficient of GAPI-1 composites decreased by 41.1%, 70%, and 35.7%, respectively, while the wear rate decreased by 39%, 50%, and 25.1%, respectively. Meanwhile, the tensile strength, tensile modulus, and the elongation at break of GAPI-1 films increased by 40.8%, 51.3%, and 49.2%, respectively, relative to those of pure PI. We anticipate that this work can be used to exploit a simple and effective method for preparing materials for bearings and transmission parts that possess good tribological properties under harsh lubrication conditions.


2014 ◽  
Vol 66 (1) ◽  
pp. 66-74 ◽  
Author(s):  
Aleksandar Vencl ◽  
Ilija Bobic ◽  
Blaza Stojanovic

Purpose – Aluminium alloys are frequently applied in automotive and other industries, since they provide mass reduction. Besides positive effects, aluminium alloys have their shortcomings reflected, first of all, in inappropriate tribological properties of these materials. The aim of this research was to enable the production of cheap aluminium alloy matrix composite with favourable combination of structural, mechanical and tribological properties, focusing on the tribological behaviour. Design/methodology/approach – The A356 Al-Si alloy was used as a matrix for producing metal matrix composites in compocasting process. Three different materials, in form of particles, were added to the matrix (Al2O3, SiC and graphite). Hardness and tribological properties (wear, friction and wear mechanism) of heat-treated (T6) samples were examined and compared. Tribological tests were carried out on ball-on-block tribometer under dry sliding conditions. Sliding was linear (reciprocating). Counter body was alumina ball. Average velocity was 0.038 m/s (max. 0.06 m/s), sliding distance was 500 m and normal load was 1 N. Findings – The effect of two different ceramic particles and graphite particles on tribological properties of obtained composites was evaluated. Wear resistance of composites reinforced with SiC particles was higher and coefficient of friction was lower compared to the composite reinforced with Al2O3 particles. A dual hybrid composite (with SiC and graphite particles) showed the lowest value of wear rate and friction coefficient. Dominant wear mechanism for all tested material was adhesion. Research limitations/implications – It seems useful to continue the work on developing hybrid composites containing soft graphite particles with A356 Al-Si alloy as matrix. The major task should be to improve particles distribution (especially with higher graphite content) and to explore tribological behaviour in diverse working conditions. Originality/value – Particulate composites with A356 aluminium alloy as a matrix produced in compocasting process using ceramic particles (Al2O3, SiC) were investigated in many researches, but there are only few detailed analyses of dual composites (with the addition of ceramic and graphite particles). In some previous studies, it was shown that compocasting process, as relatively cheap technology, can obtain good structural and mechanical characteristics of composites. In this study, it was shown that even a low graphite content, under specified conditions, can improve tribological properties.


Author(s):  
Jagannath Verma ◽  
Leeladhar Nagdeve ◽  
Harish Kumar

In this research work, the interaction of aluminum alloy (6061) and EN-31 steel is examined, and interaction is studied on the basis of tribological outcomes under dry sliding conditions at various ranges of temperature. The extrusion process is actually an intricate process, which depends on environmental temperature, sliding velocity with respect to the mating part, the type of external shape, wear and coefficient of friction. Here, variables which directly or indirectly influence the interactions are designed for this system in such a manner that the results can be co-related with another system that has equivalent working condition as there in hot forming and cold forming (up to 250°C) of material interactions. The current work is done on a pin which slides on a disc of aluminium alloy 6061 and EN-31 steel set-up. Experiments are carried out under different conditions by using the design of experiments (DoE) for each case. In the first case (Case-I), the disc is steel and the aluminum alloy works as a pin. In the second case (Case-II), the disc is aluminum alloy and steel works as a pin. Henceforth, frictional coefficient and difference in the weight or wear (volume loss) before and after experiment is achieved. Finally, experiments are designed with the help of design tool to optimize the results and execute the different parameters by involving the analysis of variance . Lower wear volume loss is observed in a steel disc compared to the aluminium alloy pin at room temperature.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Licai Fu ◽  
Jun Yang ◽  
Qinling Bi ◽  
Weimin Liu

The dry-sliding tribological properties of the dendrite composite eutectic Fe-B alloys (Fe94.3B5.7, Fe75B25 Fe67B33) were studied comparatively with various sliding speeds. The friction coefficient of the Fe-B alloy changes slightly with the boron content. The wear rate of the Fe94.3B5.7 alloy with about 30 vol. % dendrite t-Fe2B is only one third of Fe75B25 alloy with 15 vol. % dendrite and Fe67B33 alloy with 90 vol. % dendrite in the high sliding speed. First, a hard t-Fe2B phase reduced the wear of the Fe-B alloy directly. Second, the compactly oxide layers resulting from oxidation of the α-Fe on the worn surfaces also decreases the wear rate of Fe-B alloys. On the whole, the wear rate of the Fe94.3B5.7 is lower than Fe67B33 and Fe75B25.


2014 ◽  
Vol 936 ◽  
pp. 2063-2067
Author(s):  
Chen Yue ◽  
Shang Guan Bao ◽  
Ying Yu Huang

The friction and wear properties of cast iron with different graphite morphologies and matrix microstructure were investigated at high speed dry sliding against GCr15 steel on the MMS-1G high-speed tribometer apparatus. The various wear micro-mechanisms and tribo-metallographic phases were studied by using scanning electron microscopy. The results show that as friction material, vermicular iron exhibits excellent comprehensive tribological properties. The friction coefficient of cast iron sliding against GCr15 decreases while the wear rate increases with the increase of sliding speed, friction coefficient and wear rate decline with the increase of pearlite content. Under the experimental condition, the main wear mechanisms of flake iron are abrasive wear, of vermicular iron are abrasive wear and oxidative wear and of nodular iron are oxidative wear, abrasive wear and fatigue spalling.


2015 ◽  
Vol 245 ◽  
pp. 121-129 ◽  
Author(s):  
Vladimir Egorkin ◽  
Igor Vyaliy ◽  
Sergey Sinebryukhov ◽  
Sergey Gnedenkov

Influence of the polarizing signal parameter used during plasma electrolytic oxidation (PEO) on the composition, morphology and properties of protective coatings formed on aluminum alloy in tartrate-containing electrolyte has been presented. It was established, that using of the short-pulse bipolar polarizing signal (τ=5 μs) facilitates the reduction of porosity and roughness of the formed PEO-layers. This, in turn, increases wearproof and protective corrosion characteristics of the treated alloy surface. Increasing the duty cycle (D) affects on the chemical composition and the thickness of the obtained coatings.


2018 ◽  
Vol 60 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Subramaniam Magibalan ◽  
Palanisamy Senthilkumar ◽  
Chinnamuthu Senthilkumar ◽  
Rajagoundar Palanivelu ◽  
Muthusamy Prabu
Keyword(s):  
Fly Ash ◽  

2012 ◽  
Vol 565 ◽  
pp. 615-620
Author(s):  
Bin Shen ◽  
Liang Wang ◽  
Su Lin Chen ◽  
Fang Hong Sun

The CVD diamond/diamond-like carbon composite film is fabricated on the WC-Co substrate by depositing a layer of Diamond-like Carbon film on the surface of conventional Micro- or Nano-crystalline diamond film. The hot filament chemical vapor deposition (HFCVD) method and vacuum arc discharge with a graphite cathode are adopted respectively to deposit the MCD/NCD and DLC films. A variety of characterization techniques, including filed emission scanning electron microscope (FE-SEM) and Raman spectroscopy are employed to investigate the surface morphology and atomic bonding state of as-deposited MCD/DLC and NCD/DLC composite film. The results show that both MCD/DLC and NCD/DLC composite films present similar surface morphology with the MCD and NCD films, except for scattering a considerable amount of small-sized diamond crystallites among the grain boundary area. The atomic-bonding state of as-deposited MCD/DLC and NCD/DLC composite films is determined by the top-layered DLC film, which is mainly consisted of amorphous carbon phase and no discernible sp3 characteristic peak can be observed from their Raman spectrum. Furthermore, the tribological properties of as-deposited MCD/DLC and NCD/DLC composite films is examined using a ball-on-plate reciprocating friction tester under both dry sliding and water-lubricating conditions, comparing with conventional DLC, MCD and NCD films. Silicon nitride balls are used as counterpart materials. For the CVD diamond/DLC composite films, the self-lubricating effect of top-layered DLC film is beneficial for suppressing the initial friction peak, as well as shortening the run-in period. The average friction coefficients of MCD/DLC and NCD/DLC composite films during stable sliding period are 0.07 and 0.10 respectively in dry sliding; while under water-lubricating condition, they further decreases to 0.03 and 0.07.


Sign in / Sign up

Export Citation Format

Share Document