Injection Molding of PP/CaCO3 Hybrid Composites Toughened with SEBS-g-MA Elastomer: Morphological and Tensile Properties

2013 ◽  
Vol 550 ◽  
pp. 57-62
Author(s):  
Mounir El Achaby ◽  
El Mokhtar Essassi ◽  
Abou El Kacem Qaiss

The aim of this work is to prepare, by extrusion, blends of polypropylene (PP)/styrene-ethylene-butadiene-styrene-g-maleic anhydride (SEBS-g-MA) at the ratios of 100/0, 95/5, 90/10, 85/15 80/20. Then, a amount of 10 wt% of calcium carbonate (CaCO3) was added to each polymer blend to prepare (PP/SEBS-g-MA)/CaCO3 composites with effective ratios of (100/0)/10 (95/5)/10, (90/10)/10, (85/15)/15 and (80/20)/10. Morphological and tensile properties of PP/SEBS-g-MA, PP/CaCO3 and (PP/SEBS-g-MA)/ CaCO3 were evaluated and compared. It was found that the presence of SEBS-g-MA improves the particle dispersion and interfacial adhesion. The tensile properties of PP polymer were affected by addition of SEBS-g-MA and/or CaCO3. Indeed, the addition of only SEBS-g-MA the youngs modulus and tensile strength of PP were remarkably decreased and the elongation at break was significantly increased. In contrast, the PP/ CaCO3 composites shows improved youngs modulus and tensile strength and reduced elongation at break in regard to neat PP. A balance between these selected properties was found in (PP/SEBS-g-MA)/CaCO3 composites, while the youngs, tensile strength and elongation at break were together increased. .

2015 ◽  
Vol 754-755 ◽  
pp. 161-165
Author(s):  
Nurul Fatin Syazwani binti Arshad ◽  
Salmah Husseinsyah ◽  
Lim Bee Ying

This research focused on the utilization of kapok husk (KH) as filler in low linear density polyethylene (LLDPE). The effect of filler content on tensile properties and morphology of LLDPE/KH eco-composites were investigated. The eco-composites were prepared by using Brabender Plasticiser EC Plus at temperature 160 °C and rotor speed 50 rpm. The results indicated that the tensile strength and elongation at break decreased with KH content increased. However, the modulus of elasticity increased with increasing of KH content. The morphology study of eco-composites exhibit poor interfacial adhesion between KH and LLDPE.


2014 ◽  
Vol 554 ◽  
pp. 141-144 ◽  
Author(s):  
S.H. Ho ◽  
A.Ghani Supri ◽  
Pei Leng Teh

The effects of polyethylene grafted maleic anhydride (PEgMAH) as a compatibilizer on the tensile properties and swelling behavior of ethylene vinyl acetate /Natural Rubber/ Feldspar (EVA/NR/FP) composites were studied. The EVA/NR/FP composites with and without PEgMAH were prepared using Brabender Plasticoder at 160oC with 50rpm rotor speed. The results indicated that EVA/NR/FP/PEgMAH had higher value of tensile strength and M100 but lower elongation at break and percentage mass swell.


2011 ◽  
Vol 410 ◽  
pp. 51-54 ◽  
Author(s):  
Arpaporn Teamsinsungvon ◽  
Yupaporn Ruksakulpiwat ◽  
Kasama Jarukumjorn

Poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend and its composite were prepared by melt blending method. Maleic anhydride grafted PLA (PLA-g-MA) prepared in-house was used as a compatibilizer to enhance the interfacial adhesion between PLA and PBAT and also to improve the dispersion of calcium carbonate (CaCO3) in polymer matrices. Increasing PBAT content (10-30 wt%) resulted in the improvement of elongation at break and impact strength of PLA. Tensile strength, Young’s modulus, and impact strength of PLA/PBAT blend improved with the presence of PLA-g-MA due to enhanced interfacial adhesion between PLA and PBAT. As CaCO3 (5 wt%) was incorporated into the compatibilized blend, tensile strength, Young’s modulus, and impact strength insignificantly changed while elongation at break decreased.


2014 ◽  
Vol 34 (1) ◽  
pp. 69-73 ◽  
Author(s):  
Ji-Zhao Liang ◽  
De-Rong Duan ◽  
Chak-Yin Tang ◽  
Chi-Pong Tsui ◽  
Da-Zhu Chen ◽  
...  

Abstract The effects of nanometer calcium carbonate content and tensile rate on the tensile properties of the filled polycaprolactone (PCL) composites were investigated. There was a certain reinforcing effect of the filler on the PCL resin. The tensile modulus increased nonlinearly, and the tensile strength also increased with increase of the filler weight fraction. When the filler weight fraction was kept constant, the tensile modulus and tensile strength increased slightly with increasing tensile rates. By comparing the experimental results with those determined from the tensile yield strength theory, the interfacial adhesion between the filler and matrix was found to be relatively strong; it should be one of the reasons for the good reinforcing effect.


2013 ◽  
Vol 594-595 ◽  
pp. 770-774 ◽  
Author(s):  
Husseinsyah Salmah ◽  
A. Siti Rohana ◽  
Hussin Kamarudin

Inorganic filler, calcium carbonate (CaCO3) was used as filler in the polypropylene (PP)/ ethylene propylene diene terpolymer (EPDM) composites. The composites were compatibilized with Maleic anhydride grafted polypropylene (MAPP) in order to improve the properties. The addition of CaCO3 at has increased the modulus of elasticity of composites but tensile strength and elongation at break of uncompatibilized composites decreased with increasing CaCO3. The result shows that the compatibilized composites higher tensile strength and Modulus of elasticity but lower elongation at break compared to uncompatibilized composites. At 10 wt% CaCO3 showed higher tensile strength of uncompatibiled and compatibilized composites. The morphology study from SEM analysis reveals that compatibilized composites show better interfacial adhesion between the filler and the matrix. The addition of MAPP has improved crystallinity of compatibilized composites.


2015 ◽  
Vol 659 ◽  
pp. 463-467
Author(s):  
Sirirat Wacharawichanant ◽  
Parida Amorncharoen ◽  
Ratiwan Wannasirichoke

The effects of polypropylene-graft-maleic anhydride (PP-g-MA) compatibilizers on the morphology and mechanical properties of polyoxymethylene (POM)/acrylonitrile-butadiene-styrene (ABS) blends were investigated. Two types of compatibilizers, PP-g-MA with maleic anhydride 0.50 wt% (PP-g-MA1) and PP-g-MA with maleic anhydride 1.31 wt% (PP-g-MA2) were used to study the interfacial adhesion of POM and ABS. POM/ABS blends with and without PP-g-MA compatibilizer were prepared by an internal mixer and molded by compression molding. Scanning electron microscope (SEM) was used to investigate the morphology of ABS phase in POM matrix. The results found that POM/ABS blends clearly demonstrated a two phase separation of dispersed ABS phase and the POM matrix phase, and ABS phase dispersed as spherical domains in POM matrix in a range of ABS 10-30 wt% and the blends containing ABS more than 30 wt% showed the elongated structure of ABS phase. The addition of PP-g-MA could improve the interfacial adhesion of POM/ABS blends due to the domain size of ABS phase decreased after adding PP-g-MA. The mechanical properties showed that the impact strength of POM/ABS blends decreased in a range of 10-20 wt% and did not change after 20 wt%. The addition of PP-g-MA did not change the impact strength of POM/ABS blends. The Young’s modulus of POM/ABS blends increased up to 30 wt% of ABS and then decreased. While the blends showed the decrease of tensile strength and percent strain at break with increasing ABS content. The addition of PP-g-MA increased the tensile strength of POM/ABS blends in a range of 30-40 wt% of ABS. The above results indicated that the morphology had an effect on the mechanical properties of polymer blends.


2015 ◽  
Vol 754-755 ◽  
pp. 187-191 ◽  
Author(s):  
Salmah Husseinsyah ◽  
Azimah Ismail ◽  
Hakimah Osman

The effect of corn stalk content and compatibilizer on tensile properties and morphology of Low Density Polyethylene (LDPE)/Corn Stalk (CS) biocomposites was studied. The results found that the tensile strength and elongation at break decreased, but Young’s modulus increased with increasing CS content. The dispersion and interfacial adhesion between the CS filler and thermoplastic were important factors affecting the tensile properties of composites system. In order to improve the compatibility and interfacial adhesion, maleic anhydride polyethylene (MAPE) as compatibilizer was added into LDPE/CS biocomposites. The addition of MAPE has enhanced tensile properties and interfacial interaction between CS and LDPE biocomposites, as demonstrated in SEM study.


2013 ◽  
Vol 774-776 ◽  
pp. 625-628
Author(s):  
Teng Fei Shen ◽  
Fa Chao Wu

To provide polypropylene (PP) with better excellent mechanical properties, nanoCaCO3 particles are incorporated into PP matrix by melt blending in this work. To improve the mophology between PP and nanoCaCO3, maleic-anhydride grafted PP (PP-g-MAH) was added as a compatibiliser. The results showed that PP-g-MAH indeed enhanced the interfacial adhesion of PP /nanoCaCO3 composites, which is demonstrated by the measurement of scanning electron microscope (SEM). The results of tensile tests revealed that the inclusion of nanoCaCO3 slightly increased modulus and decreased tensile strength and significantly increased the elongation at break. At high fraction of nanoCaCO3, the elongation at break was declined. The nanosized feature, shape and dispersion conditions of nanoCaCO3, played important roles in determining the performances of PP/nanoCaCO3 composites.


2011 ◽  
Vol 239-242 ◽  
pp. 1349-1352
Author(s):  
Rui Bao Guo ◽  
Jin Shui Yao ◽  
Zhi Yong Yang

PE is modified basically with inorganic matter (generally CaCO3) and some auxiliaries, but because of the interattraction of the particles, CaCO3is easy to agglomerate, so we must add some dispersants(generally stearic acid ) ,but some study suggested that, with stearic acid , tensile strength, yield strain and ultimate elongation reduced. But we find that adding dicumyl peroxide and Maleic Anhydride can make up for the defects even increase these properties. As initiator and crosslinker ,dicumyl peroxide is usually used in synthesis of polymers. And is also Maleic Anhydride. However,in this experiment, we add a certain amount of them, dicumyl peroxide initiated Maleic Anhydride to ingraft, also,it initiated the molecular chains of PE to be cross-linked. So, the tensile properties of HDPE–calcium carbonate composites increased obviously, nevertheless ,we must add appropriate amount, if exceeded ,the mechanical properties would reduce.


2013 ◽  
Vol 747 ◽  
pp. 645-648 ◽  
Author(s):  
Koay Seong Chun ◽  
Salmah Husseinsyah ◽  
Hakimah Osman

Polypropylene/Cocoa Pod Husk (PP/CPH) biocomposites with different maleated polypropylene (MAPP) content were prepared via melt blending process using Brabender Plastrograph mixer. The tensile strength and tensile modulus of PP/CPH biocomposites increased with increasing of MAPP content. The PP/CPH biocomposites with 5 phr of MAPP showed the optimum improvement on tensile properties. However, the increased of MAPP content reduced the elongation at break of PP/CPH biocomposites. At 5 phr of MAPP content, PP/CPH biocomposites showed lowest elongation at break. Scanning electron microscope confirms the PP/CPH biocomposites with MAPP have better filler-matrix interaction and adhesion due to the effect of MAPP.


Sign in / Sign up

Export Citation Format

Share Document