Influence of Dicumyl Peroxide and Maleic Anhydride on the Tensile Properties of HDPE–Calcium Carbonate Composites

2011 ◽  
Vol 239-242 ◽  
pp. 1349-1352
Author(s):  
Rui Bao Guo ◽  
Jin Shui Yao ◽  
Zhi Yong Yang

PE is modified basically with inorganic matter (generally CaCO3) and some auxiliaries, but because of the interattraction of the particles, CaCO3is easy to agglomerate, so we must add some dispersants(generally stearic acid ) ,but some study suggested that, with stearic acid , tensile strength, yield strain and ultimate elongation reduced. But we find that adding dicumyl peroxide and Maleic Anhydride can make up for the defects even increase these properties. As initiator and crosslinker ,dicumyl peroxide is usually used in synthesis of polymers. And is also Maleic Anhydride. However,in this experiment, we add a certain amount of them, dicumyl peroxide initiated Maleic Anhydride to ingraft, also,it initiated the molecular chains of PE to be cross-linked. So, the tensile properties of HDPE–calcium carbonate composites increased obviously, nevertheless ,we must add appropriate amount, if exceeded ,the mechanical properties would reduce.

2013 ◽  
Vol 550 ◽  
pp. 57-62
Author(s):  
Mounir El Achaby ◽  
El Mokhtar Essassi ◽  
Abou El Kacem Qaiss

The aim of this work is to prepare, by extrusion, blends of polypropylene (PP)/styrene-ethylene-butadiene-styrene-g-maleic anhydride (SEBS-g-MA) at the ratios of 100/0, 95/5, 90/10, 85/15 80/20. Then, a amount of 10 wt% of calcium carbonate (CaCO3) was added to each polymer blend to prepare (PP/SEBS-g-MA)/CaCO3 composites with effective ratios of (100/0)/10 (95/5)/10, (90/10)/10, (85/15)/15 and (80/20)/10. Morphological and tensile properties of PP/SEBS-g-MA, PP/CaCO3 and (PP/SEBS-g-MA)/ CaCO3 were evaluated and compared. It was found that the presence of SEBS-g-MA improves the particle dispersion and interfacial adhesion. The tensile properties of PP polymer were affected by addition of SEBS-g-MA and/or CaCO3. Indeed, the addition of only SEBS-g-MA the youngs modulus and tensile strength of PP were remarkably decreased and the elongation at break was significantly increased. In contrast, the PP/ CaCO3 composites shows improved youngs modulus and tensile strength and reduced elongation at break in regard to neat PP. A balance between these selected properties was found in (PP/SEBS-g-MA)/CaCO3 composites, while the youngs, tensile strength and elongation at break were together increased. .


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 906
Author(s):  
Dong Han ◽  
Yongqing Zhao ◽  
Weidong Zeng

The present study focuses on the effect of 1% Zr addition on the microstructure, tensile properties and superplasticity of a forged SP700 alloy. The results demonstrated that Zr has a significant effect on inhibiting the microstructural segregation and increasing the volume fraction of β-phase in the forged SP700 alloy. After annealing at 820 °C for 1 h and aging at 500 °C for 6 h, the SP700 alloy with 1% Zr showed a completely globular and fine microstructure. The yield strength, ultimate tensile strength and tensile elongation of the alloy with optimized microstructure were 1185 MPa, 1296 MPa and 10%, respectively. The superplastic deformation was performed at 750 °C with an elongation of 1248%. The improvement of tensile properties and superplasticity of the forged SP700 alloy by Zr addition was mainly attributed to the uniform and fine globular microstructures.


1995 ◽  
Vol 4 (3) ◽  
pp. 096369359500400 ◽  
Author(s):  
Hiroyuki Hamada ◽  
Asami Nakai ◽  
Akihiro Fujita ◽  
Miyako Inoda

In this paper, welt knitted fabric reinforced composites were fabricated and its tensile properties were measured. Changing knitted structure from plain knit to welt knit caused changing mechanical properties, particularly isotropic tensile strength could be obtained. The fracture mode of welt knitted fabric reinforced composite was similar that of plain knitted fabric reinforced composite.


2017 ◽  
Vol 744 ◽  
pp. 282-287
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to develop the formulation of natural rubber filled with carbon black, silica and calcium carbonate for rubber calf nipple application. The reverse engineering was performed on the calf nipple product to analyze the rubber type and component by using Soxhlet extraction, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. Furthermore, mechanical properties were examined to act as benchmark for the rubber compound design. The results showed that rubber component in the nipple product was natural rubber, whereas two filler types revealed as carbon black and calcium carbonate with 10 and 35 of the total weight. In addition, rubber nipple showed the hardness of 46±1 Shore A and tensile strength of 5.3±0.60 MPa. From the investigation of the properties of developed rubber compounds in this work, it was found that the mechanical properties depended on type and content of filler. The required mechanical properties of vulcanizates were achieved at 20 phr of carbon black (N330), 20 phr of silica and 120 phr of calcium carbonate.


2014 ◽  
Vol 496-500 ◽  
pp. 317-321
Author(s):  
Shou Hai Wang ◽  
Jun Gao ◽  
Gu Ren Fei ◽  
Ping Zhang ◽  
Jun Huang ◽  
...  

Acrylonitrile-butadiene-styrene (ABS) / polymethyl methacrylate (PMMA) with the addition of maleic anhydride grafted polystyrene (KT-5) and polyolefin elastomer (POE) were melt processed in a co-rotating twin-screw extruder. The effect of KT-5 and POE content on the mechanical properties of ABS/PMMA was investigated. Experiment results indicate that KT-5 can improve the tensile strength and the composites are toughened effectively as the addition of POE. According to Orthogonal tests, it demonstrates that POE ha a greater effect on the blends than KT-5, and there exist no obvious interactivity between the two components.


2014 ◽  
Vol 695 ◽  
pp. 56-59
Author(s):  
A.R.H. Fatimah ◽  
A.Ghani Supri ◽  
Z. Firuz

Natural fillers fulfill most requirements needed to replace synthethic fillers in thermoplastic composites. However, some disadvantages appear when natural fillers are used for composites. The poor compatibility between the hydrophilic fillers with the hydrophobic polymer matrix leads to a weak interface and hence, thus poor mechanical properties. In this research, caprolactam-maleic anhydride (CL-MAH) was used as the compatibilizer (6wt%) and the effect of compatibilizer on the composites was studied on mechanical properties and swelling behavior of RHDPE/EVA/Taro. The tensile strength for RHDPE/EVA/Taro composites decreased while increasing the filler loadings but adding caprolactam-maleic anhydride in the composite significantly improved the tensile properties. The swelling behavior results indicated that increased in Taro filler and addition of CL-MAH will increase the mass swell of the composites.


2012 ◽  
Vol 488-489 ◽  
pp. 562-566
Author(s):  
S. Mohammad Reza Khalili ◽  
Neda Soleimani ◽  
Reza Eslami Farsani ◽  
Ziba Hedayatnasab

In this paper, the polypropylene (PP)nanocomposites containing 1, 3 and 5 wt % of nanoclay particles are prepared via direct melt mixing in the presence of maleic anhydride grafted PP (PP-g-MA) as compatibilizing agent. PP-g-MA is known to facilitate the dispersion of clay particles in a nonpolar PP matrix and to increase the adhesion between PP and the clay particles.The effect of different nanoclay contents on the PP composites are investigated for tensile characterization at both room temperature(RT) and cryogenic temperature (CT).The results showed that the cryogenic tensile strength, Young’s modulus, percentage of displacement at break and the energy absorptionat cryogenic temperature are all enhanced ascompared to the neat PP by the addition of clay at appropriate contents


2014 ◽  
Vol 695 ◽  
pp. 60-63
Author(s):  
Shuh Huey Ho ◽  
A.Ghani Supri ◽  
Pei Leng Teh

The EVA/NR/PF composites with and without IAMA were prepared using Brabender Plasticoder at 160oC with 50rpm rotor speed. The effects of potash feldspar loading and isophathalic acid-maleic anhydride (IAMA) on the tensile properties and morphology analysis of EVA/NR/PF composites were studied. The results indicated that tensile strength for EVA/NR/PF and EVA/NR/PFIAMA composites decreased but M100 increased as the filler loading increased. EVA/NR/PFIAMA composites showed higher value of tensile strength and M100.


2012 ◽  
Vol 476-478 ◽  
pp. 1930-1933 ◽  
Author(s):  
Jie Gao ◽  
Ge Wang ◽  
Hai Tao Cheng ◽  
Sheldon Q. Shi

The objectives of the current study involve in situ depositing treatments of calcium carbonate particles onto bamboo fibers through the ionic reaction of sodium carbonate and calcium chloride aqueous solution at varied bath temperatures, and their impacts on surface features, wettability and tensile properties of single bamboo fibers. Field emission scanning electron microscopy was employed to characterize surface morphology of fibers. The wettability of bamboo fibers was evaluated by optical contact angle measurement instrument. The results show that nanoparticles and submicron particles grew into the wrinkles and micropores of fibers, the size, morphology and adsorbance of which were distinctively varied at different bath temperatures. The highest calcium carbonate adsorbance (2.34%) was obtained at 25°C. Besides, the mean values of contact angles increased and the variations within group were reduced as the loading percentage of particles rose, which might be due to reduced hydrophilic groups after coatings of calcium carbonate particles. The treatments were approved to enhance tensile properties of single bamboo fibers, comparing to the average tensile strengh and modulus of elasticity of the untreated, those of the treated bamboo fibers with the biggest calcium carbonate loading were higher by 30.50% and 32.71% respectively. It’s proved that the precipitating treatment is a useful method to densify and hydrophobize bamboo fibers and smooth out cell wall defects. What’s more, it provide explanations for improvements of physical and mechanical properties of paper and fiber reinforced plastic composites filled with inorganic nanoparticles.


2017 ◽  
Vol 264 ◽  
pp. 112-115
Author(s):  
Erfan Suryani Abdul Rashid ◽  
Wageeh Abdulhadi Yehye ◽  
Nurhidayatullaili Muhd Julkapli ◽  
Sharifah Bee O.A. Abdul Hamid

Nanocellulose (NCC) is incorporated into nitrile butadiene rubber (NBR) latex with the composition 0 to 5 phr using dipping method. Mechanical properties of NBR/NCC composites using tensile test was used to characterize their mechanical performance and the fracture surfaces post tensile test were studied. The tensile strength of NBR/NCC composites increase significantly with the addition of nanocellulose. This could be anticipated due to the presence of Van der Waals interaction between hydrophilic natures of nanocellulose with hydrophobic of NBR consequently limits the tearing propagation. The result was supported with the fracture surfaces morphology viewed under Fourier Emission Scanning Electron Microscopy (FESEM).


Sign in / Sign up

Export Citation Format

Share Document