Mechanical and Morphology Properties of Polypropylene/ Nano-CaCO3 Composites

2013 ◽  
Vol 774-776 ◽  
pp. 625-628
Author(s):  
Teng Fei Shen ◽  
Fa Chao Wu

To provide polypropylene (PP) with better excellent mechanical properties, nanoCaCO3 particles are incorporated into PP matrix by melt blending in this work. To improve the mophology between PP and nanoCaCO3, maleic-anhydride grafted PP (PP-g-MAH) was added as a compatibiliser. The results showed that PP-g-MAH indeed enhanced the interfacial adhesion of PP /nanoCaCO3 composites, which is demonstrated by the measurement of scanning electron microscope (SEM). The results of tensile tests revealed that the inclusion of nanoCaCO3 slightly increased modulus and decreased tensile strength and significantly increased the elongation at break. At high fraction of nanoCaCO3, the elongation at break was declined. The nanosized feature, shape and dispersion conditions of nanoCaCO3, played important roles in determining the performances of PP/nanoCaCO3 composites.

2012 ◽  
Vol 488-489 ◽  
pp. 62-66
Author(s):  
Jareenuch Rojsatean ◽  
Supakij Suttireungwong ◽  
Manus Seadan

The blend of poly(styrene-co-acrylonitrile) (SAN) and natural rubber (NR) is immiscible and incompatible which lead to poor mechanical properties. Many methods can be carried out to improve the compatibility. In this work, the potential of various reactive compatibilizers in SAN and NR blend was explored. The morphological and mechanical properties were compared. The melt blending of SAN and NR were prepared in an internal mixer with various types of reactive agent such as styrene-co-maleic anhydride (SMA), maleic anhydride (MA), peroxide and mixed reactive agents. The morphological textures of the blends were investigated by scanning electron microscope. Mechanical properties including tensile strength, impact strength and elongation at break were measured. The results of morphological observations revealed that SAN/NR blend with reactive agent, the mixture of SMA and MA show the smallest and the most uniform dispersed NR particles, where the size of NR particle is about 1 µm. The mechanical properties of the blends revealed impact strength and elongation at break were increased with addition of reactive agents. SAN/NR blend with the mixture of SMA and MA showed the highest elongation at break but it had lower impact strength than the blend with SMA.


2000 ◽  
Vol 9 (4) ◽  
pp. 096369350000900 ◽  
Author(s):  
C. Gonzalez ◽  
J. Llorca

The effect of processing on the mechanical properties of Sigma 1140+ SiC fibres was studied through tensile tests carried out on pristine Sigma 1140+ SiC fibres and on fibres extracted from a Ti-6A1-4V-matrix composite. The elastic modulus and the tensile strength were computed after measuring carefully the fibre diameter. The characteristic fibre strength was reduced by 20% and the Weibull modulus by half during composite processing. The analysis of the fracture surfaces in the scanning electron microscope showed that the strength-limiting defects were located around the tungsten core in pristine fibres and predominantly at the surface in fibres extracted from the composite panels. These latter defects were nucleated by the mechanical stresses generated on the fibres during the panel consolidation.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Li Juan

The nanocomposites of polypropylene (PP)/graphene were prepared by melt blending. The effects of the dosage of graphene on the flow and mechanical properties of the nanocomposites were investigated. The morphologies of fracture surfaces were characterized through scanning electron microscopy (SEM). The graphene simultaneous enhanced tensile and impact properties of nanocomposites. A 3.22% increase in tensile strength, 39.8% increase in elongation at break, and 26.7% increase in impact strength are achieved by addition of only 1 wt.% of graphene loading. The morphological behavior indicates the fracture surface of PP/graphene is more rough than that of pure PP.


2011 ◽  
Vol 230-232 ◽  
pp. 1231-1235 ◽  
Author(s):  
Jin Hua ◽  
Zhi Min Zhao ◽  
Wei Yu ◽  
Ben Zheng Wei

The rice husk powder was modified by polymer (lactic acid) (PLA) and Maleic anhydride (coupling agent, MAPP). Composite material was prepared in the way of melt blending. The mechanical properties, water absorbability of rice husk/polymer (lactic acid) (PLA) composites, and the relations between these properties and microscopic characteristics were investigated. The result showed that, with the increasing content of rice husk power, the maximum bearable tension and tensile strength increased; Water absorbability after 2 hours’ immersion hadn't significant change, but after 24 hours’ immersion, the water absorbing capacity had obvious addition. The study also showed that coupling agent could significantly reduce the water absorbability of composite materials; The use of scanning electron microscope (SEM) found that the interface became smoother, the adhesion between PLA and rice husk powder became closer when add the coupling agent to the rice husk powder, it also could well explain the differences between water absorbability and mechanical properties.


2013 ◽  
Vol 834-836 ◽  
pp. 237-240 ◽  
Author(s):  
Kanyakorn Pawarangkool ◽  
Wirunya Keawwattana

In this work, hydroxyapatite (HAp) was produced from crocodile bones by thermal process at 900°C. X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR) and Scanning electron microscope (SEM) were used to characterize the obtained HAp. Polylactic acid (PLA)/HAp composites were prepared by melt blending as follows: 95/5, 90/10 and 85/15 (weight ratio). The effect of the amount of HAp on the mechanical properties including tensile strength, modulus, elongation at break and impact strength of PLA/HAp composites was undertaken. It was found that tensile strength and elongation at break of the composites decreased with an increase of HAp content, while modulus and impact strength showed no significant effect.


2014 ◽  
Vol 893 ◽  
pp. 402-405
Author(s):  
Gang Chen ◽  
Zhi Min Zhang ◽  
Wei Chen

Mechanical properties of Al-12Zn-2.4Mg-1.2Cu alloy extruded sheet were investigated by tensile tests. Microstructures were investigated by optical microscopy (OM) and scanning electron microscope (SEM). The result shows that no matter in the L direction or in the T direction, the tensile strength and yield strength decrease with the increasing of the extrusion temperature in different states. The tensile strength and yield strength in the L direction are higher than in the T direction at different extrusion temperatures and different treatment states. When temperature is 340°C, the highest tensile strength is 780 MPa and the highest yield strength is 753 MPa in the two-stage solution and two-stage aging state. The reason for the higher mechanical properties are in the L direction in different states is mainly depend on the distribution direction of the grains.


2021 ◽  
Vol 56 (3) ◽  
pp. 215-222
Author(s):  
MA Hashem ◽  
MHR Sheikh ◽  
Rahamatullah ◽  
M Biswas ◽  
MA Hasan ◽  
...  

In tannery, fleshing is the unavoidable solid waste which has negative effect on the environment. Fleshing contains fat, and protein.In this work, fat extracted fleshing was used for composite fabrication. After collecting limed fleshing, fat was extracted in water bath.The fat extracted fleshing was dried, ground,passes through 80-mesh and homogenized.For proper adhesion and bonding with fleshing powder, epoxy resin and hardener were mixed at various ratios and poured onto an aluminum sheetfor 24 h curing. The mechanical properties of the composite were investigated by tensile strength, elongation at break, and Young’s modulus. The composite was characterized by Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscope (SEM) for related functional groups and surface analysis. The investigation provided satisfactory information on the proper bonding of the fleshing powder and resin/hardener. The approach explores the valorization of he waste for managing solid waste in the tannery. Bangladesh J. Sci. Ind. Res.56(3), 215-222, 2021


2013 ◽  
Vol 747 ◽  
pp. 645-648 ◽  
Author(s):  
Koay Seong Chun ◽  
Salmah Husseinsyah ◽  
Hakimah Osman

Polypropylene/Cocoa Pod Husk (PP/CPH) biocomposites with different maleated polypropylene (MAPP) content were prepared via melt blending process using Brabender Plastrograph mixer. The tensile strength and tensile modulus of PP/CPH biocomposites increased with increasing of MAPP content. The PP/CPH biocomposites with 5 phr of MAPP showed the optimum improvement on tensile properties. However, the increased of MAPP content reduced the elongation at break of PP/CPH biocomposites. At 5 phr of MAPP content, PP/CPH biocomposites showed lowest elongation at break. Scanning electron microscope confirms the PP/CPH biocomposites with MAPP have better filler-matrix interaction and adhesion due to the effect of MAPP.


2012 ◽  
Vol 32 (6-7) ◽  
pp. 435-444 ◽  
Author(s):  
Hsin-Tzu Liao ◽  
Chin-San Wu

Abstract Melt blending of polylactide (PLA), poly(ε-caprolactone) (PCL), and wood flour (WF) was performed in an effort to overcome the major drawbacks (brittleness and high price) of PLA. In addition, the acrylic acid (AA)-grafted PLA70PCL30 (PLA70PCL30-g-AA) was used as the alternative for the preparation of ternary blends to improve the compatibility and the dispersability of WF within the PLA70PCL30 matrix. As expected, PCL improved the elongation at break and the toughness of PLA but decreased the tensile strength and modulus. Because the hydrophilic WF is dispersed physically in the hydrophobic PLA70PCL30 matrix, as the result of Fourier transform infrared analysis, the mechanical properties of PLA70PCL30 became noticeably worse when it was blended with WF. This problem was successfully conquered by using PLA70PCL30-g-AA to replace PLA70PCL30 due to the formation of an ester carbonyl group between PLA70PCL30-g-AA and WF. Furthermore, the PLA70PCL30-g-AA/WF blend provided a plateau tensile strength at break when the WF content was up to 50 wt%. PLA70PCL30/WF exhibited a tensile strength at break of approximately 3–25 MPa more than PLA70PCL30-g-AA/WF. By using p-cresol and tyrosinase, the enzymatic biodegradable test showed that PLA70PCL30-g-AA is somewhat more biodegradable than PLA70PCL30 because the former has better water absorption. After 16 weeks, the weight loss of the PLA70PCL30/WF (50 wt%) composite was >80%. PLA70PCL30-g-AA/WF exhibited a weight loss of approximately 1–12 wt% more than PLA70PCL30-g-AA/WF. It was also found that the addition of WF to PLA70PCL30 or PLA70PCL30-g-AA decreased the crystallinity of PLA and PCL in PLA70PCL30 or PLA70PCL30-g-AA and then increased their biodegradable property.


2013 ◽  
Vol 681 ◽  
pp. 256-259
Author(s):  
Xiu Qi Liu ◽  
He Qin Xing ◽  
Li Li Zhao ◽  
Dan Wang

In our study, a new kind of foam composite was prepared by melt blending with PVC as the matrix and carbon black (CB) as the filler, the standard-spline was made in the dumbbell system prototype. Tensile strength and elongation at break were measured at 25°C。When the CB was added greater than 2.0%, with the increase of CB added, the determination of sample mechanical index began to decline, when the CB content was greater than 9%, tensile strength and elongation at break of the composites remained basically unchanged.


Sign in / Sign up

Export Citation Format

Share Document