The Influence of Cold Forming Conception on the Springback Magnitude

2013 ◽  
Vol 554-557 ◽  
pp. 2299-2311
Author(s):  
Paweł Bałon ◽  
Andrzej Świątoniowski

Cold forming, especially for steels of increased mechanical properties, encounters problem with a springback. Most of the tools require compensation of that effect, however it is not always feasible in a conventional way. In some special cases such as twisting springback, compensation of a tool remains an ineffective method of solving the problem. This paper aims to investigate the behaviour of springback deviation which may be reduced using the change of forming conception such as: crash forming, holding and stamping or stamping with pad. The results lead to an in-depth understanding of the design process and parameters for advanced high strength components. It is immensely important for tool shops which usually have only few weeks to make a tool. The essence of designing and numerical simulations must be emphasized. Without them some problems with twisting springback may be encountered during trial test what would involve labour absorbing corrections and some extra costs. Therefore, it is crucial to pay attention to forming conception, as using it we can obtain entirely different

Author(s):  
M. Yu. Matrosov ◽  
P. G. Martynov ◽  
A. V. Mitrofanov ◽  
K. Yu. Barabash ◽  
T. V. Goroshko ◽  
...  

High-strength sheet product of low-alloyed steel, used at manufacturing of heavy-loaded structures, must have, apart from wear resistance, high toughness, good weldability, ability to hot and cold forming, machinability and low cost. Combination of these properties based on forming fine grain austenite structure before the martensitic transformation at definite its thermal treatment modes. Results of study of microstructure, fine structure and mechanical properties of high-strength boron-containing low-alloyed steel after different technological methods of the rolled product manufacturing presented: high-temperature hot rolling and twostages controlled rolling with accelerated cooling followed by thermal treatment – quenching with tempering. Variants of optimal modes of thermal treatment determined, providing combination of high level of impact toughness under negative temperatures, hardness and strength properties of sheet product. The two considered in the article technological variants, comprising treatment of low-alloyed steel with boron (hot rolling and two-stages controlled rolling with accelerated cooling) followed by thermal treatment results in forming fine structure of tempered martensite, which provides high mechanical properties, meeting the made requirements. Depending on the heating temperature before quenching in the range 770–950 °С, the morphology of the actual steel grain is changing from elongated to equiaxed, which is connected with the metal recrystallization process during heating after plastic deformation. The study results obtained allow to optimize the thermal treatment processes of sheet product of low-alloyed boron containing steel for particular conditions of application.


2020 ◽  
Vol 62 (10) ◽  
pp. 1017-1024
Author(s):  
Serkan Aktas ◽  
Yasin Kisioglu

Abstract Bolt production with a grade of 10.9 class quality made from AISI4140 material with a low thread rolling index is usually implemented in accordance with the thread rolling method (cold forming) in industrial applications. In this method, the effects of die revolutions and multiple passes are unknown in the thread forming process as the devices are usually operated with respect to geometrical dimensions but not the mechanical properties and microstructures of the material. In the literature there are few studies on microstructures of low-carbon steel having a higher thread rolling index in bolt production. This study experimentally examined the effects of the processing parameters on the mechanical properties and microstructures. Parameters such as forming speed and single or multi-pass influences were considered in the production of M12 × 1.75 and M20 × 2.5 fasteners widely used in industrial applications. The experiments identified the behavior of the mechanical properties, microstructures and micro-hardness of the AISI4140 material at two forming speeds (rpm) and three passes in the thread rolling process. Thus, significantly sensible outcomes as a function of processing parameters were obtained considering the thread strength viewpoints.


2011 ◽  
Vol 473 ◽  
pp. 699-706 ◽  
Author(s):  
Thomas Svec ◽  
Martin Grüner ◽  
Marion Merklein

Increasing demands regarding security aspects and light weight construction lead to the application of advanced high strength steels (AHSS) and ultra high strength steels (UHSS) in the automotive sector. Due to high process forces and the reduced formability of these steel grades within cold forming new manufacturing technologies like the hot stamping process are required. Furthermore, crash-performance plays an important role in the automotive industry. Therefore functional optimized components are necessary. Hence, actual research work within the community is focused on manufacturing components with local adjusted mechanical properties. One of the strategies to realize the contradictorily requirements regarding energy absorption and structural integrity is the Tailored tempering process where the cooling rates are adjusted by controlled heating or cooling of different tool zones within the hot stamping process. Thereby knowledge concerning the influence of the different heated tool parts on the heat transfer and the resulting mechanical properties is necessary. Furthermore, the applicability and the accuracy of the calculation approaches used for characteristic values like the heat transfer coefficient in the FE-based simulation have to be analyzed and evaluated. Due to this experiments with a tool which exhibits a heated and a cooled zone were performed according to the Tailored tempering process. During the experiments contact pressures and tool temperatures in the heated tool part were varied and analyzed regarding the influence on the heat transfer. Furthermore, the heat transfer coefficients were calculated and verified by a numerical model built according to the experimental setup and the accuracy of the model was evaluated by the comparison of characteristic values calculated from the experimental and numerical process data.


2014 ◽  
Vol 782 ◽  
pp. 215-218 ◽  
Author(s):  
Pavol Zubko ◽  
Marek Vojtko ◽  
Ladislav Pešek ◽  
Miroslav Német ◽  
Pavel Bekeč

Dual phase (DP), interstitial free (IF) and advanced high strength low alloy steel (HSLA)sheets have been successfully used for different components of car body. DP and HSLA are used ascrash resistant and IF as cover or “skin” of car body. The development of new vehicles nowadays isbeing driven by the need to simultaneously reduce mass and increase of passenger and pedestriansafety as well as costs saving through cold forming instead of hot forming. Limited publishedinformation is available on the changes in microstructure of these steel grades at different highstrain rates [1-3].This paper deals with changes of mechanical properties, microstructure and fractography of threesteel grades, which were tested at quasi static (10-3 s-1) and high strain rate (3000 s-1). Themicrostructures were characterized in terms of ferrite grain size, aspect ratio of ferrite andelongation of constituent phases. Deformed and undeformed specimens were compared to assess thechanges in the microstructure. The fracture appearance analysis indicates that the fracture patternunder high strain rates is mainly ductile, regardless of steel grades. The microstructure changessignificantly during the deformation process under both quasi-static and dynamic tension in allinvestigated steels. The plastic deformation in ferrite dominates in this process.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


Alloy Digest ◽  
1975 ◽  
Vol 24 (9) ◽  

Abstract BERYLCO NICKEL ALLOY 440 is an age-hardenable nickel-beryllium-titanium alloy that offers high strength, excellent spring properties outstanding formability, good high-temperature mechanical properties, and resistance to corrosion and fatigue. Complex shapes can be produced in the solution-treated (soft) condition and then aged to a minimum tensile strength of 215,500 psi. It is used for mechanical and electrical/electronic components in the temperature range -320 to 800 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-94. Producer or source: Kawecki Berylco Industries Inc.. Originally published September 1964, revised September 1975.


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Sign in / Sign up

Export Citation Format

Share Document