A Study of Absorption Properties Improvement of Cotton Blended Fabric

2013 ◽  
Vol 559 ◽  
pp. 13-18 ◽  
Author(s):  
Anna Borisova ◽  
Skaidrīte Reihmane

Successful results of textile materials finishing process in order to gain desired properties to the fabric according to customers’ demands mainly depend on properly-carried pre-treatment stages. The present study covers twill weave cotton/polyester fabric’s modification in alkaline medium at different temperatures and treatment durations through exhaustion (hot and cold treatment) and pad-steam process. An influence of the reduction agent addition was ascertained. Weight loss, water absorbency, vertical wicking, dye uptake, colour measurements, surface morphology and psysicomechanical characteristics were determined. Samples and recommendations of optimal alkaline treatment technologies are developed.

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Adele Brunetti ◽  
Francesca Macedonio ◽  
Giuseppe Barbieri ◽  
Enrico Drioli

Abstract The recent roadmap of SPIRE initiative includes the development of “new separation, extraction and pre-treatment technologies” as one of the “key actions” for boosting sustainability, enhancing the availability and quality of existing resources. Membrane condenser is an innovative technology that was recently investigated for the recovery of water vapor for waste gaseous streams, such as flue gas, biogas, cooling tower plumes, etc. Recently, it has been also proposed as pre-treatment unit for the reduction and control of contaminants in waste gaseous streams (SOx and NOx, VOCs, H2S, NH3, siloxanes, halides, particulates, organic pollutants). This perspective article reports recent progresses in the applications of the membrane condenser in the treatment of various gaseous streams for water recovery and contaminant control. After an overview of the operating principle, the membranes used, and the main results achieved, the work also proposes the role of this technology as pre-treatment stage to other separation technologies. The potentialities of the technology are also discussed aspiring to pave the way towards the development of an innovative technology where membrane condenser can cover a key role in redesigning the whole upgrading process.


2019 ◽  
Vol 37 (No. 4) ◽  
pp. 246-251 ◽  
Author(s):  
Joanna Tkaczewska ◽  
Maciej Wielgosz ◽  
Piotr Kulawik ◽  
Marzena Zajac

The influence of drying temperature on the characteristics and gel properties of gelatine from Cyprinus carpio L. skin was studied. Gelatine was extracted from the carp skin using NaOH and ethanol pre-treatment method, extracted in water in 45°C and then dried in 4 different temperatures: 50, 70, 80°C and freeze-dried. The  electrophoresis and functional properties of gelatines were investigated. Freeze drying allowed to obtain a high gelling force, and all other methods did not give satisfactory results. The proteins in gelatines dried at higher temperatures separated by electrophoresis gave severely blurred bands. It may be explained by thermal hydrolysis of collagen fibrils. Freeze drying is the only effective method for drying this product, which can be used in industry.


2007 ◽  
Vol 27 (3) ◽  
pp. 398-405 ◽  
Author(s):  
Trine Lund Hansen ◽  
Jes la Cour Jansen ◽  
Åsa Davidsson ◽  
Thomas Højlund Christensen

2020 ◽  
Vol 14 (2) ◽  
pp. 213
Author(s):  
Valentinus Galih Vidia Putra ◽  
Lutfi Zulfikar ◽  
Atin Sumihartanti ◽  
Juliany Ningsih Mohamad ◽  
Yusril Yusuf

This study aims to develop conductive textile materials using a polyester textile yarn by applying a knife coating method and pre-treatment of a tip-cylinder plasma electrode. In this research, carbon ink was coated on polyester staple yarn which was given a pre-treatment with a plasma generator and coated with the knife coating method. The electrical conductivity of conductive yarns produced from this study was divided into two types, as yarns without plasma treatment and with plasma treatment with a ratio of water and carbon ink concentrations of 1:1 and 2:1. The results of the electrical conductivity with plasma treatment and the concentration of carbon ink and water of 1:1 and 1:2 were 69005 (Ωm)-1 and 50144.25 (Ωm)-1, respectively, while the results of the electrical conductivity for threads with concentrations of carbon ink and water of 1:1 and 1:2 without plasma treatment were 18197.64 (Ωm)­‑1  and 8873.54 (Ωm)-1, respectively. The results showed that the concentration of carbon ink and water and plasma treatment affected the conductive value of the yarn. The results also showed that the presence of plasma pre-treatment improved the coating process of conductive ink on the yarn.Keywords: carbon ink; conductive yarn; plasma; textile A B S T R A KPenelitian ini bertujuan untuk mengembangkan bahan tekstil konduktif menggunakan benang tekstil poliester dengan mengaplikasikan metode knife coating dan pre-treatment plasma elektroda tip-cylinder. Pada penelitian ini dilakukan pelapisan dengan tinta karbon pada benang poliester stapel yang diberi perlakuan awal dengan plasma generator dan dilapisi dengan metode pelapisan knife coating. Konduktivitas listrik benang konduktif yang dihasilkan dari penelitian ini dibagi menjadi dua jenis, yaitu benang tanpa perlakuan plasma dan dengan perlakuan plasma dengan perbandingan konsentrasi air dan tinta karbon sebesar 1:1 dan 2:1. Hasil konduktivitas listrik dengan perlakuan plasma dan konsentrasi tinta karbon dan air sebesar 1:1 dan 1:2 masing-masing adalah 69005 (Ωm)‑1 dan 50144,25 (Ωm)-1, sedangkan hasil konduktivitas listrik untuk benang dengan konsentrasi tinta karbon dan air sebesar 1:1 dan 1:2 tanpa perlakuan plasma masing-masing adalah 18197,64 (Ωm)-1 dan 8873,54 (Ωm)-1. Hasil penelitian menunjukkan bahwa konsentrasi tinta karbon dan air serta perlakuan plasma berpengaruh terhadap nilai konduktivitas benang serta adanya pre-treatment plasma dapat meningkatkan proses coating tinta konduktif pada benang.Kata kunci: benang konduktif; plasma; tekstil; tinta karbon 


2021 ◽  
Vol 15 (2) ◽  
pp. 164-169
Author(s):  
Jian Gu ◽  
Sea-Hoon Lee ◽  
Daejong Kim ◽  
Hee-Soo Lee ◽  
Jun-Seop Kim

Improvement of the thermal stability of continuous SiC fiber reinforced SiC ceramic matrix composites (SiCf/SiC CMC) by the pre-treatment of SiC fillers and the suppression of oxidation during polymer impregnation and pyrolysis (PIP) process were investigated. Dense SiCf/SiC CMCs were fabricated using the slurry infiltration and PIP process under a purified argon atmosphere. Structure and mechanical properties of the SiCf/SiC CMC heated at different temperatures were evaluated. The flexural strength of the SiCf/SiC CMC decreased only 15.3%after heating at 1400 ?C, which exhibited a clear improvement compared with the literature data (49.5% loss), where severe thermal deterioration of SiCf/SiC composite occurred at high temperatures by the crystallization and decomposition of the precursor-derived ceramic matrix. The thermal stability of the SiCf/SiC CMC fabricated by PIP process was improved by the pre-treatment of SiC fillers for removing oxides and the strict atmosphere control to prevent oxidation.


2021 ◽  
Vol 900 (1) ◽  
pp. 012042
Author(s):  
N Stevulova ◽  
A Estokova

Abstract This paper is addressed to comparative study of changes in thermal stability of surface-modified hemp-hurds aggregates long-term incorporated in bio-aggregate-based composites with the original ones before their integration into alternative binder matrix. In this study, the effectiveness of alkaline treatment of hemp hurds compared to the raw bio-aggregates as well as in relation to their behaviour when they are long-term incorporated in the MgO-cement environment is investigated. The differences in the thermal behaviour of the samples are explained by the changed structure of hemp hurds constituents due to the pre-treatment and long-term action of the alternative binder components on the bio-aggregates. Alkaline treatment increases thermal stability of hemp hurds compared to raw sample. Also long-term incorporation of hemp hurds in MgO-cement matrix had a similar effect in case of alkaline modified bio-aggregates. The more alkali ions present in the structure of hemp hurdssamples, the more ash is formed during their thermal decomposition studied by thermal gravimetry (TG) and differential scanning calorimetry (DSC).


2018 ◽  
Vol 3 (1) ◽  
pp. 87-96
Author(s):  
Muhammad Arif Fahmi Supian ◽  
Khairatun Najwa Mohd Amin ◽  
Saidatul Shima Jamari ◽  
Shahril Mohamad

In this study, microcrystalline cellulose (MCC) was extracted from empty fruit bunch (EFB) with alkaline treatment, bleaching and acid hydrolysis treatment and its properties were compared with commercial MCC. Two conditions were optimized in this study which are fiber consistency and sodium hydroxide (NaOH) concentration in alkaline pretreatment. The obtained optimum consistency and alkaline concentration are 5% and 20%respectively. The physicochemical and morphological characteristics, elemental composition and size distribution of the obtained alpha cellulose and MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin and hemicellulose were absent in the spectrum of the alpha cellulose and MCC. The difference in surface morphology and aggregation between alpha cellulose, MCC and commercialized MCC were observed by scanning electron microscopy (SEM). The mean length of approximately 251.3 μm, 41.4 μm and 138.6 μm were measured for alpha cellulose, MCC and commercialized MCC respectively. Thus, the isolated MCC from EFB has a good potential to be utilized as reinforcing agent in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research.


2020 ◽  
Vol 841 ◽  
pp. 166-170
Author(s):  
Phattharachai Maichin ◽  
Teewara Suwan ◽  
Peerapong Jitsangiam ◽  
Prinya Chindaprasirt

High demand for using parts of natural materials, e.g., cores, fibers or leaves, as alternative additives are being increased. The main reasons are that natural materials can be served as renewable and eco-friendly choices such a sustainable development. Nevertheless, some limitations of applying those natural products, such as biodegradation, UV degradation, or weak bonding, are raised and need to be modified before further handling. One of the modification techniques for bio-based materials is chemical treatment by using alkaline solution (alkalization). Treatment process allows the plant's fiber to have fewer impurities as well as to increase the bonding on its contacting surface area. This research focuses on (i) effects of NaOH solution concentration on the pre-treatment properties of hemp fibers and (ii) self-treatment behavior of hemp fiber in geopolymer composites. The results show that the concentration of NaOH solution directly affected the pre-treatment process of hemp fiber as higher concentration from 1, 3, 5, 8, 10 to 12 Molar provided more vanishing level of fiber impurities, indicated by Contact Angle (CA) measurement and Fourier Transform Infrared (FT-IR) Spectroscopy analysis. With the concept of alkaline treatment, the self-treatment process was therefore applied for hemp fiber incorporated in alkaline-activated geopolymer matrix. The results illustrate the self-treatment behavior of hemp fiber in geopolymer composites, which could improve the final performances of the hardened products without conventional pre-treatment process.


2014 ◽  
Vol 6 (4) ◽  
pp. 400-406 ◽  
Author(s):  
Rasa Volungevičienė ◽  
Violeta Bolutienė ◽  
Kęstutis Buinevičius

Recycling waste printed circuit boards (PCB) is an extremely complicated process, because PCBs consist of a number of complex components – hazardous and non-hazardous materials sets. Pyrolysis and combustion are currently the most effective treatment technologies for waste printed circuit boards. Pyrolysis can be used for thermally decomposing PCBs allowing for the simultaneous recovery of valuable materials. Following the extraction of valuable materials, the problem of residual ash utilization is encountered. Determining the qualitative and quantitative characteristics of incineration residue helps with choosing effective ash management technologies. This paper analyzes PCB ash generated at three different temperatures of 400 °C, 500 °C and 600 °C. Ash residues have been analysed to determine the quantity and type of metals present. Furthermore, the experiment of leaching heavy metals from ash has been described. Nebenaudojamoje elektroninėje įrangoje esančių montažinių plokščių (elektronikos plokščių) perdirbimas yra itin komplikuotas procesas, nes jos sudarytos iš daugybės kompleksinių komponentų – pavojingųjų ir nepavojingųjų medžiagų rinkinių. Pirolizė ir deginimas – šiuo metu vienos efektyviausių elektronikos plokščių apdorojimo technologijų ekonominiu ir aplinkosaugos požiūriu. Gauti elektronikos plokščių pelenai toliau naudojami vertingoms medžiagoms išgauti. Išgavus vertingas medžiagas, susiduriama su likusių pelenų naudojimo problema. Tik žinant susidariusių pelenų kokybines ir kiekybines charakteristikas galima parinkti efektyvias pelenų tvarkymo technologijas. Šiame darbe analizuojami televizorių ir kitų namų ūkių prietaisų elektronikos plokščių pelenai, kurie gauti elektronikos plokštes deginant trijose skirtingose temperatūrose: 400 °C, 500 °C ir 600 °C. Įvertinama, kiek pavojingi elektronikos plokščių pelenai. Šiame darbe taip pat atliekamas geležies, mangano, švino, chromo, vario ir cinko išplovimo iš pelenų eksperimentas, siekiant nustatyti galimą metalų išsiplovimą šalinant pelenus sąvartynuose arba jiems patekus į aplinką įvykus avarijoms.


Sign in / Sign up

Export Citation Format

Share Document