Modeling Analytically the Pull-In of Double-Cantilever Structure

2013 ◽  
Vol 562-565 ◽  
pp. 1499-1503
Author(s):  
Hui Jin Yu ◽  
Hui Yang ◽  
Hua Qing Shen ◽  
Bei Peng ◽  
Wu Zhou

This paper presents an analytical model based on the basis finite element analysis to solve the nonlinear behavior of double-cantilever structure. The structure beam is replaced with a series of beam elements by traditional finite element method. The deformation curve of the beam is calculated by gradually loading voltage in small increments, and pull-in behavior is identified when the convergence of the deflection iteration cannot be achieved after voltage increment. This method considers the effect of deformation on stiffness by establishing a new equivalent stiffness matrix for each voltage step on the basis of the results of previous steps. Through this approach, we prevent the approximate errors of the stiffness matrix from accumulating. The analytical results show good agreement with those obtained by using multiphysics coupling software.

2019 ◽  
Vol 276 ◽  
pp. 01012
Author(s):  
I Ketut Sudarsana ◽  
I Gede Gegiranang Wiryadi ◽  
I Gede Adi Susila

The occurrence of unbalanced moment in edge slab-column connections of flat plate structure cannot be avoided and increase the slab shear stress around the column. This paper investigates the effect of M/V ratio on punching shear strength of edge column-slab connections using finite element analysis. The Concrete Damage Plasticity (CDP) and truss model in Abaqus were used to model the nonlinear behavior of concrete and reinforcement, respectively. Ten values of the M/V ratio were applied to a subassembly edge connection model which was part of a properly design of a 5 story flat plate structure. The shear strength prediction of ACI 318-14 code on the effect of unbalanced moment in edge column-slab connection was also studied. The analysis results show that the effect of unbalanced moment on shear strength is not significant for M/V ratio less than 0.3. However, for M/V ratio greater than 0.3, the shear strength is reduced in an exponential order. The ACI 318-14 code overestimates prediction on connection’s shear strength for the M/V ratio less than 0.3. The code predictions are in a good agreement with the analysis results for the edge connection with the M/V ratio greater than 0.3.


2021 ◽  
pp. 136943322110499
Author(s):  
Feleb Matti ◽  
Fidelis Mashiri

This paper investigates the behaviour of square hollow section (SHS) T-joints under static axial tension for the determination of stress concentration factors (SCFs) at the hot spot locations. Five empty and corresponding concrete-filled SHS-SHS T-joint connections were tested experimentally and numerically. The experimental investigation was carried out by attaching strain gauges onto the SHS-SHS T-joint specimens. The numerical study was then conducted by developing three-dimensional finite element (FE) T-joint models using ABAQUS finite element analysis software for capturing the distribution of the SCFs at the hot spot locations. The results showed that there is a good agreement between the experimental and numerical SCFs. A series of formulae for the prediction of SCF in concrete-filled SHS T-joints under tension were proposed, and good agreement was achieved between the maximum SCFs in SHS T-joints calculated from FE T-joint models and those from the predicted formulae.


Author(s):  
James K. Wilkins

A project has been conducted to verify a finite element analysis procedure for studying the nonlinear behavior of 90°, stainless steel, 4 inch schedule 10, butt welding elbows. Two displacement controlled monotonic in-plane tests were conducted, one closing and one opening, and the loads, displacements, and strains at several locations were recorded. Stacked 90° tee rosette gages were used in both tests because of their ability to measure strain over a small area. ANSYS shell element 181 was used in the FEA reconciliations. The FEA models incorporated detailed geometric measurements of the specimens, including the welds, and material stress-strain data obtained from the attached straight piping. Initially, a mesh consisting of sixteen elements arrayed in 8 rings was used to analyze the elbow. The load-displacement correlation was quite good using this mesh, but the strain reconciliation was not. Analysis of the FEA results indicated that the axial and hoop strain gradients across the mid-section of the elbow were very high. In order to generate better strain correlations, the elbow mesh was refined in the mid-section of the elbow to include 48 elements per ring and an additional six rings, effectively increasing the element density by nine times. Using the refined mesh produced much better correlations with the strain data.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
H. F. Wang ◽  
Z. F. Sang ◽  
L. P. Xue ◽  
G. E. O. Widera

The burst pressure of cylinders with hillside nozzle is determined using both experimental and finite element analysis (FEA) approaches. Three full-scale test models with different angles of the hillside nozzle were designed and fabricated specifically for a hydrostatic test in which the cylinders were pressurized with water. 3D static nonlinear finite element simulations of the experimental models were performed to obtain the burst pressures. The burst pressure is defined as the internal pressure for which the structure approaches dimensional instability, i.e., unbounded strain for a small increment in pressure. Good agreement between the predicted and measured burst pressures shows that elastic-plastic finite element analysis is a viable option to estimate the burst pressure of the cylinders with hillside nozzles. The preliminary results also suggest that the failure location is near the longitudinal plane of the cylinder-nozzle intersection and that the burst pressure increases slightly with an increment in the angle of the hillside nozzle.


2013 ◽  
Vol 831 ◽  
pp. 137-140
Author(s):  
Kang Min Lee ◽  
Liu Yi Chen ◽  
Rui Li ◽  
Keun Yeong Oh ◽  
Young Soo Chun

Coupling beams resist lateral loads efficiently is well known in coupled wall systems. In many cases, geometric limits result in coupling beams that are deep in relation to their clear span. Coupling beams with small depth-to-span ratio shall be reinforced with two intersecting groups of diagonally placed bars symmetrical along the mid-span. It's always hard to optimize construction projects. This paper used the finite element software (Abaqus) to analysis and simulate the nonlinear behavior of a new reinforcement called head bar and compared the results to the current standards.


1990 ◽  
Vol 112 (4) ◽  
pp. 481-483 ◽  
Author(s):  
Mack G. Gardner-Morse ◽  
Jeffrey P. Laible ◽  
Ian A. F. Stokes

This technical note demonstrates two methods of incorporating the experimental stiffness of spinal motion segments into a finite element analysis of the spine. The first method is to incorporate the experimental data directly as a stiffness matrix. The second method approximates the experimental data as a beam element.


2011 ◽  
Vol 201-203 ◽  
pp. 1601-1605 ◽  
Author(s):  
Shang Ping Chen ◽  
Wen Juan Yao ◽  
Sheng Qing Zhu

In this paper, a nonlinear three-dimensional finite element model for super-long pile and soil interaction is established. In this model, contact elements are applied to simulate the nonlinear behavior of interaction of super-long pile and soil. A nonlinear elastic constitutive model for concrete is employed to analyze stress-strain relation of pile shaft under the axial load and the Duncan-Chang’s nonlinear constitutive model is used to reflect nonlinear and inelastic properties of soil. The side friction resistance, axial force, pile-tip resistance, and developing trend of soil plastic deformation are obtained and compared with measured results from static load tests. It is demonstrated that a super-long pile has the properties of degradation of side friction resistance and asynchronous action between side and pile-tip resistance, which is different from piles with a short to medium length.


Author(s):  
Vikas Radhakrishna Deulgaonkar ◽  
S.N. Belsare ◽  
Naik Shreyas ◽  
Dixit Pratik ◽  
Kulkarni Pranav ◽  
...  

Present work deals with evaluation of stress, deflection and dynamic properties of the folded vehicle structure. The folded vehicle in present case is a single seat vehicle intended to carry one person. Design constraints are the folded dimensions of the vehicle and the maximum vehicle speed is limited to 15m/s. Using classical calculations dimensions of the vehicle are devised. Different materials are used for seat, telescopic support and chassis of the foldable vehicle. computer aided model is prepared using CATIA software. Finite element analysis of the foldable vehicle has been carried out to evaluate the static and dynamic stresses induced in the vehicle components. Meshing of the foldable vehicle is carried using Ansys Workbench. From modal analysis six mode shapes of the foldable vehicle are formulated, corresponding frequencies and deflections are devised. Mesh generator is used to mesh the foldable vehicle. The deflection and frequency magnitudes of foldable vehicle evaluated are in good agreement with the experimental results available in literature for similar materials.


Author(s):  
Robert E. Dodde ◽  
Scott F. Miller ◽  
Albert J. Shih ◽  
James D. Geiger

Cautery is a process to coagulate tissues and seal blood vessels using the heat. In this study, finite element modeling (FEM) was performed to analyze temperature distribution in biological tissue subject to cautery electrosurgical technique. FEM can provide detailed insight into the heat transfer in biological tissue to reduce the collateral thermal damage and improve the safety of cautery surgical procedure. A coupled thermal-electric FEM module was applied with temperature-dependent electrical and thermal properties for the tissue. Tissue temperature was measured at different locations during the electrosurgical experiments and compared to FEM results with good agreement. The temperature-dependent electrical conductivity has demonstrated to be critical. In comparison, the temperature-dependent thermal conductivity does not impact heat transfer as much as the electrical conductivity. FEM results show that the thermal effects can be varied with the electrode geometry that focuses the current density at the midline of the instrument profile.


1993 ◽  
Author(s):  
Amlan Kusum Nayak ◽  
N. Venkatrayulu ◽  
D. Prithvi Raj

Two dimensional time averaged, steady incompressible, adiabatic turbulent asymmetric near and far non-periodic and periodic wake flow problems are solved by Galerkin Finite Element Method. A primitive-variables formulation is adopted using Reynolds-averaged momentum equations, with standard k-ε turbulence model. Finite element equations are solved by Newton-Raphson technique with relaxation, using frontal solver. Periodic boundary condition is specified on the periodic lines of the cascade, and asymptotic boundary condition is specified at the exit. These boundary conditions are applied without much difficulty which are not so straight forward in finite volume (FV) method. The results show good agreement with FV prediction and experimental data.


Sign in / Sign up

Export Citation Format

Share Document