Numerical Analysis on the Influence of Interface on the Mechanical Behavior of Unidirectional Fiber Composites under Different Loads

2013 ◽  
Vol 575-576 ◽  
pp. 188-193
Author(s):  
Peng Qu ◽  
Yu Xi Jia ◽  
Guo Wei Zhu ◽  
Yun Li Guo ◽  
Xiao Chen Sun

On the smallest structural scale in the multi-scale structure composites, namely fiber scale, a numerical model was proposed for the analysis on the mechanical properties of unidirectional composites through the representative unit cell (RUC). The progressive method was used to simulate the failure behavior of fiber and matrix, and the debonding between fiber and matrix was characterized by the cohesive zone model (CZM). The failure strength of the unidirectional composite was predicted, and the influence of the interfacial strength on the mechanical behavior of unidirectional composite was discussed. It is shown that fiber dominates the failure strength of the material under the longitudinal load, whereas under the transverse load interfacial properties play an important role in the mechanical behavior of the material. The increase of the interfacial strength can significantly improve the capability of transverse compression and shear resistance.

2016 ◽  
Vol 713 ◽  
pp. 232-235 ◽  
Author(s):  
L. Távara ◽  
I.G. García ◽  
Roman Vodička ◽  
C.G. Panagiotopoulos ◽  
Vladislav Mantič

Understanding matrix failure in LFRP composites is one of the main challenges when developing failure criteria for these materials. This work aims to study the influence of the secondary transverse load on the crack initiation at micro-scale. Four non-classical approaches of fracture mechanics are used to model the onset of fibre-matrix interface debonds: Linear Elastic Brittle Interface Model (LEBIM), an Energetic Approach for the Linear Elastic Brittle Interface Model (EA-LEBIM), an Energetic Approach for the bilinear Cohesive Zone Model (EA-CZM) and the Coupled Criterion of the Finite Fracture Mechanics (CC-FFM). Results obtained by these approaches predict that, for brittle fibre-matrix configurations, a secondary transverse compression reduces the critical value of the main transverse tension leading to the debond onset. This fact is not taken into account by the currently used failure criteria


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3364
Author(s):  
Young Cheol Kim ◽  
Soon Ho Yoon ◽  
Geunsu Joo ◽  
Hong-Kyu Jang ◽  
Ji-Hoon Kim ◽  
...  

This study describes the numerical simulation results of aluminum/carbon-fiber-reinforced plastic (CFRP) hybrid joint parts using the explicit finite-element solver LS-DYNA, with a focus on capturing the failure behavior of composite laminates as well as the adhesive capacity of the aluminum–composite interface. In this study, two types of adhesive modeling techniques were investigated: a tiebreak contact condition and a cohesive zone model. Adhesive modeling techniques have been adopted as a widely commercialized model of structural adhesives to simulate adhesive failure based on fracture mechanics. CFRP was studied with numerical simulations utilizing LS-DYNA MAT54 to analyze the crash capability of aluminum/CFRP. To evaluate the simulation model, the results were compared with the force–displacement curve from numerical analysis and experimental results. A parametric study was conducted to evaluate the effect of different fracture toughness values used by designers to predict crash capability and adhesive failure of aluminum/CFRP parts.


Author(s):  
Yi Pan ◽  
Assimina A. Pelegri

Fiber debonding in a bundled fiber reinforced polymer composite is investigated by using finite element method and cohesive zone model. Fiber and matrix are modeled as isotropic and linear elastic materials. Fiber/matrix interface is represented by a cohesive zone model governed by the traction-separation law. Effects of interfacial strength on interfacial debonding and stress field in the bundled fiber composite are examined. The stress field of the debonding composite is compared to that of perfectly bonded composite.


2008 ◽  
Vol 33-37 ◽  
pp. 339-344 ◽  
Author(s):  
Ryota Masuda ◽  
Hirotsugu Inoue ◽  
Kikuo Kishimoto

Adhesives are widely used in our life and industrial world. However, it is difficult to characterize their mechanical properties because those strongly depend on environmental and mechanical conditions such as temperature, humidity or strain rate. In this paper, we focus on the strain rate dependence of the interfacial strength and investigate the interfacial strength by peel tests under several peel rates. The results show that, in lower rate region (under 1.0 mm/s), the interfacial strength is constant and, in transition region (1.0 to 10 mm/s) the interface strength increased with the peel rate. In middle rate region (10 to 103 mm/s), the interfacial strength is constant again. Over 103 mm/s region, the interfacial strength drops and became lower than those in middle rate cases. From the observation of peeling front by a high speed video camera, the deformation behavior of adhesives changes with the peel rate.􀀁Finite element analysis by using cohesive zone model is also conducted, and influence of the rate dependency of adhesive and base material is discussed.


Author(s):  
Lingyun Jiang ◽  
Chandra Nath ◽  
Johnson Samuel ◽  
Shiv G. Kapoor

The failure mechanisms encountered during the machining of carbon nanotube (CNT) polymer composites are primarily governed by the strength of the CNT–polymer interface. Therefore, the interface should be explicitly modeled in microstructure-level machining simulations for these composites. One way of effectively capturing the behavior of this interface is by the use of a cohesive zone model (CZM) that is characterized by two parameters, viz., interfacial strength and interfacial fracture energy. The objective of this study is to estimate these two CZM parameters of the interface using an inverse iterative finite element (FE) approach. A microstructure-level 3D FE model for nanoindentation simulation has been developed where the composite microstructure is modeled using three distinct phases, viz., the CNT, the polymer, and the interface. The unknown CZM parameters of the interface are then determined by minimizing the root mean square (RMS) error between the simulated and the experimental nanoindentation load–displacement curves for a 2 wt. % CNT–polyvinyl alcohol (PVA) composite sample at room temperature and quasi-static strain state of up to 0.04 s−1, and then validated using the 1 wt. % and 4 wt. % CNT–PVA composites. The results indicate that for well-dispersed and aligned CNT–PVA composites, the CZM parameters of the interface are independent of the CNT loading in the weight fraction range of 1–4%.


Author(s):  
Xiaopeng Wan ◽  
Guangmeng Yang ◽  
Meiying Zhao

The representative volume element(RVE) of the computational micromechanics is established with random fiber distribution being generated by random sequential expansion algorithm. The plasticity of matrix and interfacial decohesion are simulated by using Drucker-Prager model and cohesive zone model respectively. The effects of the random fiber distribution and interfacial strength on the transverse compressive strength of unidirectional composites are analyzed. The results show that the random fiber distribution is a factor to cause the instability of the transverse compressive strength. Meanwhile, the matrix plastic shear damage and non interfacial damage is dominated in compression failure. Therefore, the RVE model without interface element adopted can clearly predict the compressive strength and the damage process of unidirectional composites, which contributes to simplify the modeling without considering the value of interfacial parameters.


Author(s):  
Gaurav Singh ◽  
Vijay Kumar Sutrakar ◽  
D. Roy Mahapatra

Intermetallic alloys of Ni-Al have important applications in high temperature anti-corrosive coatings, engine and turbine related materials, and shape memory devices. Predicting failure behavior of these materials is difficult using purely continuum model, since several of the material constants are complicated functions of micro and nano-scale details. This includes solid-solid phase transformation. In the present paper, a framework for analyzing fracture in two-dimensional planar domain is developed using a molecular dynamic (MD) simulation and extended finite element method (XFEM). The framework is then applied to simulate fracture in Ni-Al thin-film. Effect of Ni Al crystallites of various sizes on the mechanical properties is analyzed using direct MD simulations. Initiation and growth of crack under slow (quasi-static) tensile loading in mode-I condition is considered. Mechanical properties at room temperature are estimated via MD simulations, which are further used in the XFEM at the continuum scale. A cohesive zone model for the macroscopic XFEM model is implemented, which directly bridges the molecular length-scale via MD framework. Numerical convergence studies are reported for mode-I crack in initially single crystal B2 Ni-Al thin film.


Author(s):  
Feng Qin ◽  
Ninggang Shen ◽  
Kevin Chou

Coating-substrate interface properties and deposition residual stresses may have significant effects on diamond-coated tool performance. However, it is still distant to understand how the interface mechanical behavior and deposition residual stress together influence the diamond-coated tool thermo-mechanical behavior during machining. In this study, a 2D cutting simulation incorporating deposition residual stresses and an interface cohesive zone model has been developed to demonstrate the feasibility of evaluating coating delamination of a diamond-coated tool during cutting. It has been shown that even the residual deposition stresses alone may result in crack initiations in the cohesive zone (i.e., the interface). In addition, the study further demonstrates that the feasibility of implementing cohesive zone interface in a diamond-coated tool in 2D cutting simulation. An example of cohesive failure occurred in the cutting simulation is shown. The result shows a large uncut chip thickness can cause cohesive delamination during cutting.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3661 ◽  
Author(s):  
Kaida Dai ◽  
Baodi Lu ◽  
Pengwan Chen ◽  
Jingjing Chen

A microstructure finite element method combining the cohesive zone model (CZM) is used to simulate the mechanical behavior, deformation, and failure of polymer-bonded explosive (PBX) 9501 under quasi-static loading. PBX 9501 consists of Cyclotetramethylene tetranitramine (HMX) filler particles with a random distribution packaged in a polymeric binder. The particle is treated as elastic and the binder as viscoelastic. Cohesive elements with a bilinear softening law are inserted into the particle/binder interface, the HMX particle, and the binder to study the interface’s debonding and failure evolution. Macroscopic stress–strain curves homogenized across the microstructure under tension and compression with different strain rates are basically consistent with the experimental data. The interface debonding approximately vertical to the loading direction is the primary failure mechanism under tension, while shear failure along the interfaces and particle fracture plays a significant role under compression. The effects of interface strengths and strain rates on the performance of PBX 9501 are also evaluated. The tensile and compressive strengths are dependent on the interface strength and strain rate, but the failure paths are insensitive. This model is shown to accurately predict macroscopic responses and improve our understanding of the relationship between the mechanical behavior and microstructure of PBX 9501.


Sign in / Sign up

Export Citation Format

Share Document