Innovative Composite HA Scaffold Rapid Prototyping for Bone Reconstruction: An In Vitro Pilot Study

2013 ◽  
Vol 583 ◽  
pp. 56-63 ◽  
Author(s):  
Isidoro Giorgio Lesci ◽  
Leonardo Ciocca ◽  
Barbara Dozza ◽  
Enrico Lucarelli ◽  
Sergio Squarzoni ◽  
...  

The ability to control the architecture and strength of a bone tissue engineering scaffold is critical to achieve a harmony between the scaffold and the host tissue. The scaffold attempts to mimic the function of the natural extracellular matrix, providing a temporary template for the growth of target tissues. The study of nanocrystalline calcium phosphate physical-chemical characteristics and, thereafter, the possibility to imitate bone mineral for the development of new advanced biomaterials is constantly growing. Scaffolds should have suitable architecture and strength to serve their intended function. Rapid prototyping (RP) technique is applied to tissue engineering to satisfy this need and to create a scaffold directly from the scanned and digitized image of the defect site. Design and construction of complex structures with different shapes and sizes, at micro and macro scale, with fully interconnected pore structure and appropriate mechanical properties are possible by using RP techniques. In this study we present a new biocompatible hybrid scaffold obtained through two different experimental methods and formed by synthetic biomimetic Hydroxyapatite (HA) nanocrystals with high surface reactivity which synergistically interacts with Poly(e-caprolactone) (PCL) and polylactic acid (PLLA). The aim of this pilot study is to test the adhesion and the proliferation of human mesenchymal stem cells (MSC) on both the scaffolds. MSC growth and distribution was evaluated 24 h and 7 days after in-vitro seeding. The results allowed the conclusion that these scaffolds are biocompatible and allow the colonization and proliferation of MSC, therefore, due to their mechanical properties, they are adequate for bone tissue engineering.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1319
Author(s):  
Muhammad Umar Aslam Khan ◽  
Wafa Shamsan Al-Arjan ◽  
Mona Saad Binkadem ◽  
Hassan Mehboob ◽  
Adnan Haider ◽  
...  

Bone tissue engineering is an advanced field for treatment of fractured bones to restore/regulate biological functions. Biopolymeric/bioceramic-based hybrid nanocomposite scaffolds are potential biomaterials for bone tissue because of biodegradable and biocompatible characteristics. We report synthesis of nanocomposite based on acrylic acid (AAc)/guar gum (GG), nano-hydroxyapatite (HAp NPs), titanium nanoparticles (TiO2 NPs), and optimum graphene oxide (GO) amount via free radical polymerization method. Porous scaffolds were fabricated through freeze-drying technique and coated with silver sulphadiazine. Different techniques were used to investigate functional group, crystal structural properties, morphology/elemental properties, porosity, and mechanical properties of fabricated scaffolds. Results show that increasing amount of TiO2 in combination with optimized GO has improved physicochemical and microstructural properties, mechanical properties (compressive strength (2.96 to 13.31 MPa) and Young’s modulus (39.56 to 300.81 MPa)), and porous properties (pore size (256.11 to 107.42 μm) and porosity (79.97 to 44.32%)). After 150 min, silver sulfadiazine release was found to be ~94.1%. In vitro assay of scaffolds also exhibited promising results against mouse pre-osteoblast (MC3T3-E1) cell lines. Hence, these fabricated scaffolds would be potential biomaterials for bone tissue engineering in biomedical engineering.


2016 ◽  
Vol 23 (3) ◽  
pp. 245-256 ◽  
Author(s):  
Sima Shahabi ◽  
Yashar Rezaei ◽  
Fathollah Moztarzadeh ◽  
Farhood Najafi

AbstractWe developed degradable poly(propylene fumarate)/bioactive glass (PPF/BG) composite scaffolds based on a sintered microsphere technique and investigated the effects of BG content on the characteristics of these composite scaffolds. Immersion in a simulated body fluid (SBF) was used to evaluate the surface reactivity of composite scaffolds. The surface of composite scaffolds was covered with hydroxycarbonate apatite layer after 7 days of immersion. Ion concentration analyses revealed a decrease in P concentration and an increase in Si, Ca, and Sr concentrations in SBF immersed with composite scaffolds during the 3-week period. The Ca and P uptake rates decreased after 4 days of incubation. This coincided with the decrease of the Si release rate. These data lend support to the suggestion that the Si released from the BG content of scaffolds present in the polymer matrix was involved in the formation of the Ca-P layer. The evaluation of the in vitro degradation of composite microspheres revealed that the weight of scaffolds remained relatively constant during the first 3 weeks and then started to decrease slowly, losing 10.5% of their initial mass by week 12. Our results support the concept that these new bioactive, degradable composite scaffolds may be used for bone tissue engineering applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (112) ◽  
pp. 110557-110565 ◽  
Author(s):  
Yinxian Yu ◽  
Sha Hua ◽  
Mengkai Yang ◽  
Zeze Fu ◽  
Songsong Teng ◽  
...  

A composite scaffold was fabricated with a method involving both electrospinning and 3D printing to give microscale pores and good mechanical properties. Biocompatibility and cell infiltration on the scaffold was evaluated by an in vitro study.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xiongfeng Tang ◽  
Yanguo Qin ◽  
Xinyu Xu ◽  
Deming Guo ◽  
Wenli Ye ◽  
...  

For bone tissue engineering, the porous scaffold should provide a biocompatible environment for cell adhesion, proliferation, and differentiation and match the mechanical properties of native bone tissue. In this work, we fabricated porous polyetherimide (PEI) scaffolds using a three-dimensional (3D) printing system, and the pore size was set as 800 μm. The morphology of 3D PEI scaffolds was characterized by the scanning electron microscope. To investigate the mechanical properties of the 3D PEI scaffold, the compressive mechanical test was performed via an electronic universal testing system. For the in vitro cell experiment, bone marrow stromal cells (BMSCs) were cultured on the surface of the 3D PEI scaffold and PEI slice, and cytotoxicity, cell adhesion, and cell proliferation were detected to verify their biocompatibility. Besides, the alkaline phosphatase staining and Alizarin Red staining were performed on the BMSCs of different samples to evaluate the osteogenic differentiation. Through these studies, we found that the 3D PEI scaffold showed an interconnected porous structure, which was consistent with the design. The elastic modulus of the 3D PEI scaffold (941.33 ± 65.26 MPa) falls in the range of modulus for the native cancellous bone. Moreover, the cell proliferation and morphology on the 3D PEI scaffold were better than those on the PEI slice, which revealed that the porous scaffold has good biocompatibility and that no toxic substances were produced during the progress of high-temperature 3D printing. The osteogenic differentiation level of the 3D PEI scaffold and PEI slice was equal and ordinary. All of these results suggest the 3D printed PEI scaffold would be a potential strategy for bone tissue engineering.


2021 ◽  
Vol 41 (5) ◽  
pp. 375-386
Author(s):  
Hessam Rezaei ◽  
Mostafa Shahrezaee ◽  
Marziyeh Jalali Monfared ◽  
Sonia Fathi Karkan ◽  
Robabehbeygom Ghafelehbashi

Abstract Here, the role of simvastatin-loaded graphene oxide embedded in polyurethane-polycaprolactone nanofibers for bone tissue engineering has been investigated. The scaffolds were physicochemically and mechanically characterized, and obtained polymeric composites were used as MG-63 cell culture scaffolds. The addition of graphene oxide-simvastatin to nanofibers generates a homogeneous and uniform microstructure as well as a reduction in fiber diameter. Results of water-scaffolds interaction indicated higher hydrophilicity and absorption capacity as a function of graphene oxide addition. Scaffolds’ mechanical properties and physical stability improved after the addition of graphene oxide. Inducing bioactivity after the addition of simvastatin-loaded graphene oxide terminated its capability for hard tissue engineering application, evidenced by microscopy images and phase characterization. Nanofibrous scaffolds could act as a sustained drug carrier. Using the optimal concentration of graphene oxide-simvastatin is necessary to avoid toxic effects on tissue. Results show that the scaffolds are biocompatible to the MG-63 cell and support alkaline phosphatase activity, illustrating their potential use in bone tissue engineering. Briefly, graphene-simvastatin-incorporated in polymeric nanofibers was developed to increase bioactive components’ synergistic effect to induce more bioactivity and improve physical and mechanical properties as well as in vitro interactions for better results in bone repair.


2021 ◽  
Author(s):  
A. Najafinezhad ◽  
H. R. Bakhsheshi-Rad ◽  
A. Saberi ◽  
A. A. Nourbakhsh ◽  
M. Daroonparvar ◽  
...  

Abstract It is very desirable to have good antibacterial properties and mechanical properties at the same time for bone scaffolds. Graphene oxide (GO) can increase the mechanical properties and antibacterial performance, while forsterite (Mg2SiO4) as the matrix can increase forsterite/GO scaffolds' biological activity for bone tissue engineering. Interconnected porous forsterite scaffolds were developed by space holder processes for bone tissue engineering in this research. The forsterite/GO scaffolds had a porosity of 77-80%. The mechanism of the mechanical strengthening, antibacterial activity, and cellular function of the forsterite/GO scaffold was evaluated. The findings show that the compressive strength of forsterite/1wt.% GO scaffold was significantly increased, in comparison to forsterite scaffolds without GO. Validation of the samples' bioactivity was attained by forming a hydroxyapatite layer (HAp) on the forsterite/GO surface within in vitro immersion test. The results of cell viability demonstrated that synthesized forsterite scaffolds with low GO did not show cytotoxicity and enhanced cell proliferation. Antibacterial tests showed that the antibacterial influence of forsterite/GO scaffold was strongly correlated with GO concentration. The scaffold encapsulated with 2wt.% GO had the highest bacterial inhibition. As results show, the produced forsterite/1wt.% GO can be an attractive option for bone tissue engineering.


2021 ◽  
Author(s):  
Maxime Leblanc Latour ◽  
Maryam Tarar ◽  
Ryan J. Hickey ◽  
Charles M. Cuerrier ◽  
Isabelle Catelas ◽  
...  

Plant-derived cellulose biomaterials have recently been utilized in several tissue engineering applications. These naturally-derived cellulose scaffolds have been shown to be highly biocompatible in vivo, possess structural features of relevance to several tissues, and support mammalian cell invasion and proliferation. Recent work utilizing decellularized apple hypanthium tissue has shown that it possesses a pore size similar to trabecular bone and can successfully host osteogenic differentiation. In the present study, we further examined the potential of apple-derived cellulose scaffolds for bone tissue engineering (BTE) and analyzed their mechanical properties in vitro and in vivo. MC3T3-E1 pre-osteoblasts were seeded in cellulose scaffolds. Following chemically-induced osteogenic differentiation, scaffolds were evaluated for mineralization and for their mechanical properties. Alkaline phosphatase and Alizarin Red staining confirmed the osteogenic potential of the scaffolds. Histological analysis of the constructs revealed cell invasion and mineralization throughout the constructs. Furthermore, scanning electron microscopy demonstrated the presence of mineral aggregates on the scaffolds after culture in differentiation medium, and energy-dispersive spectroscopy confirmed the presence of phosphate and calcium. However, although the Young′s modulus significantly increased after cell differentiation, it remained lower than that of healthy bone tissue. Interestingly, mechanical assessment of acellular scaffolds implanted in rat calvaria defects for 8 weeks revealed that the force required to push out the scaffolds from the surrounding bone was similar to that of native calvarial bone. In addition, cell infiltration and extracellular matrix deposition were visible within the implanted scaffolds. Overall, our results confirm that plant-derived cellulose is a promising candidate for BTE applications. However, the discrepancy in mechanical properties between the mineralized scaffolds and healthy bone tissue may limit their use to low load-bearing applications. Further structural re-engineering and optimization to improve the mechanical properties may be required for load-bearing applications.


2019 ◽  
Vol 819 ◽  
pp. 9-14 ◽  
Author(s):  
Kanharit Wongsawichai ◽  
Arada Kingkaew ◽  
Aninart Pariyaisut ◽  
Supang Khondee

Bone tissue engineering is an alternative approach to generate bone using biomaterials and cells. Hydroxyapatite (HA) has good biocompatibility, osteoinductivity, and osteoconductivity. However, it has limited utility due to poor mechanical properties and slow degradation rate. To improve mechanical properties and to modify degradation profile, hydroxyapatite was tethered in chitosan (CS) and carboxymethyl cellulose (CMC) complex. Gelatin was incorporated to promote cell attachment and polyvinyl alcohol (PVA) was used to improve mechanical strength of this scaffold. The physico-mechanical and biological properties of these scaffolds were investigated. Fourier transform infrared (FTIR) analysis and X-ray diffraction (XRD) showed the incorporation of hydroxyapatite in polymer matrix. The scaffolds had density, compressive strength, and Young’s modulus in the range of 0.24-0.30 g/cm3, 0.028-0.035 MPa, 0.178-0.560 MPa, respectively. The scaffolds had porosity of 69-91 percent. Higher content of PVA decreased porosity of scaffolds. Scanning electron microscope showed porous microstructure with pore size in the range of 60-183 μm. In vitro test on MC3T3-E1 preosteoblast cells showed negligible cytotoxicity of scaffolds. The data suggested that HA/CS/CMC/gelatin/PVA scaffold has potential applications in bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document