Bioactivity of a Poly(70lactic-co-30glycolic acid)/15CaO-85SiO2 Composite with a Dual Pore Structure

2013 ◽  
Vol 587 ◽  
pp. 211-214
Author(s):  
Hye Young Shin ◽  
Sang Hee Shin ◽  
Sang Hoon Rhee

The low crystalline hydroxyl carbonate apatite forming capacity of a poly (70lactic-co-30glycolic acid)/15CaO-85SiO2 composite, which had a dual pore structure, was newly examined in simulated body fluid. The bioactive 15CaO-85SiO2 particles were synthesized by a sol-gel method using tetraethyl orthosilicate (TEOS) and calcium nitrate tetrahydrate under acidic condition followed by the heat treatment at 600°C for 3h. The poly (70lactic-co-30glycolic acid)/15CaO-85SiO2 composite was then prepared by a solvent casting using dimethylformide as a solvent. The composite was loaded into a high pressure chamber and then carbon dioxide gas was introduced achieving a final pressure of 20 MPa. After 3 days, carbon dioxide gas was released quickly and resultantly the dual pore structure was obtained. The samples were observed by FE-SEM and its bioactivity was tested in simulated body fluid.

2014 ◽  
Vol 614 ◽  
pp. 7-10
Author(s):  
Hye Young Shin ◽  
Sang Hee Shin ◽  
Sang Hoon Rhee

The low crystalline hydroxyl carbonate apatite forming capacity of a poly (70lactic-co-30glycolic acid)/15CaO-85SiO2 composite, which had a dual pore structure, was newly examined in simulated body fluid. The bioactive 15CaO-85SiO2 particles were synthesized by a sol-gel method using tetraethyl orthosilicate (TEOS) and calcium nitrate tetrahydrate under acidic condition followed by the heat treatment at 600°C for 3h. The poly (70lactic-co-30glycolic acid)/15CaO-85SiO2 composite was then prepared by a solvent casting using dimethylformide as a solvent. The composite was loaded into a high pressure chamber and then carbon dioxide gas was introduced achieving a final pressure of 20 MPa. After 3 days, carbon dioxide gas was released quickly and resultantly the dual pore structure was obtained. The samples were observed by FE-SEM and its bioactivity was tested in simulated body fluid.


2007 ◽  
Vol 330-332 ◽  
pp. 979-982
Author(s):  
Hong Bin Yang ◽  
Qi Chen ◽  
Li Song ◽  
Hui Ping Li ◽  
Jian Ying Lu ◽  
...  

Porous CaO-P2O5-SiO2 monolithics with double-pore structure were prepared from tetraethoxysilane, triethylephosphate and calcium nitrate by a sol-gel method. Polyethylene glycol and starch were used as mesopore-making agent and as macropore-making agent, respectively. The porous monolithics, having mesopores with ~20 nm pore size and macropores with 7~20 μm pore size, could be formed from the removal of organic components after heated at 600°C for 2 hours. After soaked in simulated body fluid (SBF) at 37°C for 7 days, bonelike apatite was formed on the surface of the samples. The porous samples were degraded gradually in SBF solution.


2019 ◽  
Vol 800 ◽  
pp. 70-74
Author(s):  
Sahin Altundal ◽  
Marco Laurenti ◽  
Enrique Jose López‐Cabarcos ◽  
Jorge Rubio-Retama ◽  
Karlis Agris Gross

Brushite cement has advantages such as fast setting, high reactivity and good injectability over apatitic cements. To induce the bioactivity of brushite cements, the goal was to convert it into a bone-like low crystalline carbonate apatite. To achieve this induced transformation, potassium and magnesium were used as dopants which were claimed to be effective in the literature. The cements were immersed for 2 periods of time: 1 day and 6 weeks in Tas-Simulated-Body-Fluid (Tas-SBF) due to its excellent biomimetic properties with its adjusted HCO3- and Cl- ionic rates according to human-blood-plasma. 5% of potassium (to calcium sites) seemed to be more effective over magnesium modification. The aim of this study is to define an optimal composition in terms of transforming brushite into apatite.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 243
Author(s):  
Diana Horkavcová ◽  
Quentin Doubet ◽  
Gisèle Laure Lecomte-Nana ◽  
Eva Jablonská ◽  
Aleš Helebrant

The sol-gel method provides a wide variety of applications in the medical field. One of these applications is the formation of coatings on the metal implants. The coatings containing specific additive can enhance or improve the existing surface properties of the substrate. In this work, titania sol-gel coatings were doped with two forms of silver (AgNO3, Ag3PO4) and synthetic hydroxyapatite and applied on the titanium samples by dip-coating technique. After drying and slow firing, all coatings were characterized with scanning electron microscopy. Thin coatings were successfully prepared with excellent adhesion to the substrate (measured by ASTM D 3359-2), despite cracks. Coatings containing silver and hydroxyapatite demonstrated a 100% antibacterial effect against Escherichia coli after 24 h. The bioactivity of the coatings containing hydroxyapatite tested in modified simulated body fluid under static-dynamic conditions was confirmed by bone-like hydroxyapatite precipitation. To better understand the interaction of the coatings with simulated body fluid (SBF), changes of Ca2+ and (PO4)3− ions concentrations and pH values were studied.


2014 ◽  
Vol 96 ◽  
pp. 54-60 ◽  
Author(s):  
Anahí Philippart ◽  
Elena Boccardi ◽  
Lucia Pontiroli ◽  
Ana Maria Beltrán ◽  
Alexandra Inayat ◽  
...  

Novel silica-based bioactive glasses were successfully prepared by the sol-gel method. The optimized glass composition for fabrication of the scaffolds was (in mol.%) 60% SiO2 – 30% CaO - 5% Na2O - 5% P2O5 (60S30C5N5P). This composition was confirmed to develop a thick hydroxycarbonate apatite (HCA) layer in Simulated Body Fluid (SBF) after 7 days, as revealed by Fourier Transform Infrared Spectroscopy (FTIR), indicating the bioactive character of the scaffolds. The mesoporous nature of the glass structure allows the load of tetracycline and a sustained release of the drug in PBS during 7 days was measured.


2016 ◽  
Author(s):  
S. A. Syed Nuzul Fadzli ◽  
S. Roslinda ◽  
Firuz Zainuddin ◽  
Hamisah Ismail

2019 ◽  
Vol 33 (10) ◽  
pp. 1950081 ◽  
Author(s):  
Madeeha Riaz ◽  
Rehana Zia ◽  
Snudia Aslam ◽  
Alliya Qamar ◽  
Tousif Hussain ◽  
...  

In this paper, low temperature, economical sol–gel combustion method was adopted to synthesize wollastonite ceramic. Calcium nitrate tetrahydrate and tetraethyl orthosilicate were taken as source for Ca and Si, while citric acid and nitric acid were used as chelating/combustion agents. The yielded powder calcined at 600[Formula: see text]C for 4 h was characterized by FTIR, XRD and SEM techniques. Results showed that the citrate combustion method was the most efficient method to prepare wollastonite at low temperature. Moreover, in vitro bioactivity test performed in simulated body fluid (SBF) showed good bioactivity of synthesized wollastonite ceramics.


2010 ◽  
Vol 82 (2) ◽  
pp. 593-600 ◽  
Author(s):  
Royce N. Dansby-Sparks ◽  
Jun Jin ◽  
Shelly J. Mechery ◽  
Uma Sampathkumaran ◽  
Thomas William Owen ◽  
...  

2009 ◽  
Vol 79-82 ◽  
pp. 815-818 ◽  
Author(s):  
Qiu Ying Zhao ◽  
Ding Yong He ◽  
Xiao Yan Li ◽  
Jian Min Jiang

Hydroxyapatite (HA) coatings were deposited onto Ti6Al4V substrate by microplasma spraying (MPS) in the current research. The morphology, phase compositions, and percentage of crystallinity of the coatings were characterized by means of scanning electron microscopy (SEM) and X-ray diffraction. An in vitro evaluation by soaking the coatings in simulated body fluid (SBF) for up to 14 days was conducted aiming at the evaluation of their bioactivity. Results from the present investigation suggest that microplasma sprayed HA coatings exhibited certain roughness, pores, and microcracks. Thermal decomposition existed in the coatings where HA, α-TCP,β-TCP, amorphous phases, and CaO-exclusive impurities were observed. The in vitro test indicated that HA coatings deposited by MPS possessed better bioactivity and stability. A layer of carbonate-apatite covered most of the coating surface, which did not exhibit significant spalling after incubation in SBF.


2005 ◽  
Vol 480-481 ◽  
pp. 21-26 ◽  
Author(s):  
L.J. Skipper ◽  
F.E. Sowrey ◽  
D.M. Pickup ◽  
R.J. Newport ◽  
K.O. Drake ◽  
...  

The formation of a carbonate-containing hydroxyapatite, HCAp, layer on bioactive calcium silicate sol-gel glass of the formula (CaO)0.3(SiO2)0.7 has been studied in-vitro in Simulated Body Fluid (SBF). Extended X-ray Absorption Fine Structure (EXAFS), X-ray Absorption Near Edge Structure (XANES), X-ray diffraction (XRD), and solid state nuclear magnetic resonance (NMR) measurements have been performed with results showing the formation of a significantly amorphous HCAp layer after less than 5 hours in solution.


Sign in / Sign up

Export Citation Format

Share Document