Rubber Toughened Polyamide 6/High Density Polyethylene/HDPE-g-MAH Nanocomposites with Ethylene Vinyl Acetate

2013 ◽  
Vol 594-595 ◽  
pp. 745-749
Author(s):  
Farizah Hamid ◽  
Suffiyana Akhbar ◽  
Ku Halim Ku Hamid

This paper study the effective toughening of polymer nanocomposites in order to have a balance stiffness, strength and toughness by incorporation of EVA as impact modifier and organoclay as a filler. In this research, rubber toughened PA6/HDPE blends nanocomposites were blended with 1 to 5 phr of ethylene vinyl acetate (EVA) with incorporation of 5wt% organoclay (MMT) in the presence of HDPE-g-MAH as compatibilizer. The mechanical properties of the samples such as tensile test and tensile modulus were measured by universal tensile machine whiles impact strength and hardness was measured using Izod Impact Tester and Rockwell hardness tester. The composites were characterized by Fourier Transform Infrared (FTIR) spectrophotometer and Thermogravimetric Analyzer (TGA). The results exhibited enhancement of mechanical properties with incorporation of 1 phr EVA but slightly decreased for further addition of EVA content. FTIR analysis showed that both samples with and without EVA presented almost the same trend. TGA stability exhibit samples containing EVA showed lower stability than sample with EVA. Conversely, addition of EVA greatly increases the impact strength as well as improved the toughness of the composites.

2014 ◽  
Vol 554 ◽  
pp. 62-65 ◽  
Author(s):  
Noora Tiqah Mohamad Fauzi ◽  
Zurina Mohamad

The objective of this study is to investigate the effect of sepiolite concentration (2-10 phr) on the mechanical properties of polyamide 6 (PA6) / ethylene vinyl acetate (EVA) blend at the ratio 80/20. Twin screw extruder and injection moulding machine were used to prepare the samples. The strength and modulus of flexural was increased until 6 phr of sepiolite content. On the other hand, the impact strength of PA6/EVA/sepiolite composite was decreased gradually as sepiolite content increased.


2018 ◽  
Vol 773 ◽  
pp. 51-55
Author(s):  
Jasmine Pongkasem ◽  
Saowaroj Chuayjuljit ◽  
Phasawat Chaiwutthinan ◽  
Amnouy Larpkasemsuk ◽  
Anyaporn Boonmahitthisud

In this study, poly(lactic acid) (PLA) was melt mixed with three weight percentages (10–30wt%) of ethylene vinyl acetate copolymer (EVA) in an internal mixer, followed by a compression molding. According to a better combination of mechanical properties, the 90/10 (w/w) PLA/EVA was selected for preparing hybrid nanocomposites with three loadings (1, 3 and 5 parts per hundred of resin , phr) of poly(methyl methacrylate)-encapsulated nanosilica (PMMA-nSiO2). The nanolatex of PMMA-nSiO2 was synthesized via in situ differential microemulsion polymerization. The obtained PMMA-nSiO2 showed a core-shell morphology with nSiO2 as a core and PMMA as a shell, having an average diameter of 43.4nm. The influences of the EVA and PMMA-nSiO2 on the impact strength and the tensile properties of the PLA/EVA nanocomposites were studied and compared. It is found that the impact strength and the tensile properties of the 90/10 (w/w) PLA/EVA were improved with the appropriate amounts of the EVA and PMMA-nSiO2.


2013 ◽  
Vol 13 (1) ◽  
pp. 18
Author(s):  
Sirirat Wacharawichanant ◽  
Lalitwadee Noichin ◽  
Sutharat Bannarak

Mechanical and morphological properties of acrylonitrile-butadiene-styrene (ABS)/zinc oxide (ZnO) nanocomposites used ethylene-vinyl acetate copolymer (EVA) as compatibilizer were investigated. The ABS/ZnO nanocomposites without and with EVA 4 wt% were prepared by melting-blend with an internal mixer. The results showed that the addition of ZnO nanoparticles did not improve the mechanical properties of ABS/ZnO nanocomposites. The impact strength of the ABS/ZnO nanocomposites decreased with increasing ZnO content. The addition of EVA in ABS showed a decrease the impact strength but increased after adding ZnO in ABS/EVA matrix. The ABS/ZnO nanocomposites with EVA was higher the percent strain at break, but lower Young’s modulus, tensile strength and impact strength than the neat ABS and ABS/ZnO nanocomposites. The percent strain at break of ABS/ZnO nanocomposites increased with incorporation of EVA all ZnO compositions. However, the poor compatibility between ethylene in EVA and ABS matrix reduced as most of the mechanical properties of ABS/EVA/ZnO nanocomposites. The ZnO particle distributions in nanocomposites were studied by scanning electron microscopy (SEM), which observed that ZnO particles agglomerated in ABS and ABS/EVA matrix. The fractured surfaces of impact test samples were also observed through SEM and revealed that the ductile fracture of ABS was converted to brittle fracture with addition of ZnO.


2011 ◽  
Vol 366 ◽  
pp. 310-313
Author(s):  
Ming Tao Run ◽  
Meng Yao ◽  
Bing Tao Xing ◽  
Wen Zhou

The rheology, morphology and mechanical properties of the PA6/PP-g-MAH/POE blends prepared by twin-screw extruder were studied by rheometer, scanning electron microscopy, universal tester and impact tester, respectively. The results suggest that the impact strength is improved by the POE acting as a toughening agent, while the compatibility of PA6 and POE is improved by the compatibilizer of PP-g-MAH. Furthermore, the PP-g-MAH component also acts as a reinforcing agent for decreasing the strength depression induced by the POE component. When POE content is about 9 wt% and PP-g-MAH content is about 10% in blends, the blend has the maximum tensile strength and impact strength. All melts of PA6/PP-g-MAH/POE blends are pseudo-plastic fluids. Both the POE and PP-g-MAH components can increase the apparent viscosity of the melt due to their facility of the linear molecular.


2012 ◽  
Vol 576 ◽  
pp. 318-321 ◽  
Author(s):  
Bonnia Noor Najmi ◽  
Sahrim Haji Ahmad ◽  
Surip Siti Norasmah ◽  
S.S. Nurul ◽  
Noor Azlina Hassan ◽  
...  

Crosslinked polyester clay nanocomposites were prepared by dispersing originically modified montmorillonite in prepromoted polyester resin and subsequently crosslinked using methyl ethyl ketone peroxide catalyst at different clay concentration. Cure process and the mechanical properties of rubber toughened polyester clay composite have been studied. Rubber toughened thermoset polyester composite were prepared by adding 3 per hundred rubber (phr) of liquid natural rubber (LNR) was used in the mixing of producing this composite. Modification of polyester matrix was done due to the brittle problem of polyester composite. Addition of LNR will increase the toughness of composite and produce ductile polyester. Two types of composites were produced which is clay-lnr polyester composite and clay polyester composite. Addition of liquid natural rubber significantly increased the impact strength and flexural properties. Result shows that addition of 6% of clay-lnr composite give good properties on impact, strength and flexural. From the ESCR test, both composites showed good resistance to environmental.


e-Polymers ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Cong Meng ◽  
Jin-ping Qu

AbstractThe poly(butylene terephthalate) (PBT)/ethylene-vinyl acetate copolymer (EVA) blends with different contents of EVA were prepared by an vane extruder. From the observation of morphologies, impact strength and dynamic mechanical analysis (DMA), the EVA particles were well dispersed in the PBT matrix and improved the impact strength of PBT. Differential scanning calorimetry measurements demonstrate that there is little diversification in the crystal structure and type. Thermogravimetric analysis reveals that as the weight fraction of EVA increases, the thermal stability of composite is enhanced. The rheological analyses indicate that the PBT/EVA blends follow a non-Newtonian behavior and viscosities of the blends are drastically lower than that of pure PBT at higher frequencies. The storage modulus (G′) and loss modulus (G″) of the blends monotonously increase as the frequency rises. This work provides a novel method to develop blends with excellent performance.


2013 ◽  
Vol 853 ◽  
pp. 34-39
Author(s):  
Huey Ling Chang ◽  
Chih Ming Chen ◽  
Cheng Ho Chen

In this paper, epoxy, diluents, nanosilica powders and hardeners are mixed and cured form nanocomposites under different production conditions such as the amount of added nanopowders, diluents, etc. Through the use of an impact tester and a Shore durometer, the influences of the amount of added diluents and silica on mechanical properties are investigated. The results show that adding nanopowers has little effect on increasing the Shore D hardness. However, adding diluents will reduce the Shore D hardness of the composites. Without diluents, the composite added 1 wt.% of nanopowders has a maximum impact value of 6.63 KJ/m2. Adding 3.2 wt.% of diluents, the nanocomposite has a maximum impact value of 5.50 KJ/m2, also happens when the amount of added nanopowders is 1 wt.% of. Adding nanopowders more than 1 wt.% will reduce the impact strength. Nevertheless, adding nanopowders to 3 wt.%, the value is still higher than the composites without nanopowders.


2016 ◽  
Vol 36 (2) ◽  
pp. 157-163 ◽  
Author(s):  
Ayyanar Athijayamani ◽  
Balasubramaniam Stalin ◽  
Susaiyappan Sidhardhan ◽  
Azeez Batcha Alavudeen

Abstract The present study describes the preparation of aligned unidirectional bagasse fiber-reinforced vinyl ester (BFRVE) composites and their mechanical properties such as tensile, flexural, shear and impact strength. Composites were prepared by a hand lay-up technique developed in our laboratory with the help of a hot press. Mechanical properties were obtained for different fiber contents by varying the number of layers. The obtained tensile property values were compared with the theoretical results. The results show that the tensile strength increased linearly up to 44 wt% and then dropped. However, the tensile modulus increased linearly from 17 wt% to 60 wt%. In the case of flexural properties, the flexural strength increased up to 53 wt% and started to decrease. However, the flexural modulus also increased linearly up to 60 wt%. The impact strength values were higher than the matrix materials for all the specimens. The short beam shear strength values were also increased up to 53 wt% and then dropped. The modified Bowyer and Bader (MBB) model followed by the Hirsch model shows a very good agreement with experimental results in both tensile strength and modulus.


2014 ◽  
Vol 493 ◽  
pp. 703-708
Author(s):  
Farizah Hamid ◽  
Suffiyana Akhbar ◽  
Ku Halim Ku Hamid ◽  
Abdul Rahman Mohd Faizal

The effect of electron beam irradiation on mechanical properties of Ethylene vinyl acetate (EVA) with polyamide 6/high density polyethylene/HDPE-g-MAH and montmorillonite (MMT) were prepared by melt blending the characterization were investigated. The composites were characterized by Fourier Transform Infrared (FTIR) spectrophotometer and Thermogravimetric Analyzer (TGA) The samples were cross-linked by electron beam and irradiated at the dosage range of 0-200 kGy and 3.0 MeV. The mechanical properties of the samples which are tensile test and flexural test were measured by universal tensile machine whiles hardness was measured using Rockwell hardness tester. The gel content was performed to determine the formation of crosslinking and it showed improvement with increase dose up to 150 kGy. The result shows the increasing of tensile strength, tensile modulus, and hardness at the dosage 150 kGy but slightly decline at dose up to 200 kGy. Meanwhile TGA test showed that both irradiated and unirradiated samples have same trend characterization but irradiated samples are slightly more thermal stability. As a conclusion the electron beam irradiation enhance mechanical and thermal properties of ethylene vinyl acetate/polyamide 6/high density polyethylene nanocomposite.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Nhi Dinh Bui ◽  
Ngo Dinh Vu ◽  
Thao Thi Minh ◽  
Huong Thi Thanh Dam ◽  
Regina Romanovna Spiridonova ◽  
...  

The effect of the content of vinyl acetate groups in ethylene-vinyl acetate copolymer on the properties of polymer composite based on low density polyethylene and polyamide-6 was studied. Ethylene-vinyl acetate copolymer containing less vinyl acetate groups (10–14 wt.%) has a positive compatibility effect on polymer composite than ethylene-vinyl acetate copolymer containing 21–30 wt.% vinyl acetate groups. The polymer composites of LDPE, PA-6, and EVA containing 10–14 wt.% vinyl acetate groups possess the ability of biodegradation. The physical-mechanical properties of sample and molecular mass reduce after 28 days of incubation.


Sign in / Sign up

Export Citation Format

Share Document