Mechanical and thermal properties of polybutylene terephthalate/ethylene-vinyl acetate blends using vane extruder

e-Polymers ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Cong Meng ◽  
Jin-ping Qu

AbstractThe poly(butylene terephthalate) (PBT)/ethylene-vinyl acetate copolymer (EVA) blends with different contents of EVA were prepared by an vane extruder. From the observation of morphologies, impact strength and dynamic mechanical analysis (DMA), the EVA particles were well dispersed in the PBT matrix and improved the impact strength of PBT. Differential scanning calorimetry measurements demonstrate that there is little diversification in the crystal structure and type. Thermogravimetric analysis reveals that as the weight fraction of EVA increases, the thermal stability of composite is enhanced. The rheological analyses indicate that the PBT/EVA blends follow a non-Newtonian behavior and viscosities of the blends are drastically lower than that of pure PBT at higher frequencies. The storage modulus (G′) and loss modulus (G″) of the blends monotonously increase as the frequency rises. This work provides a novel method to develop blends with excellent performance.

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4242
Author(s):  
Tianliang Feng ◽  
Yangzhou Li ◽  
Liang Fang ◽  
Zhenming Chen

As artificial marble is abundant and widely used in residential and commercial fields, the resource utilization of artificial marble wastes (AMWs) has become extremely important in order to protect the environment. In this paper, polybutylene terephthalate/artificial marble wastes (PBT/AMWs) composites were prepared by melt blending to maximize resource utilization and increase PBT performance. The research results showed that the filling of AMWs was beneficial to the improvement of PBT-related performance. X-ray diffraction analysis results indicated that after filling AMWs into the PBT matrix, the crystal structure of PBT was not changed. Heat deflection temperature (HDT) analysis results indicated that the HDT of PBT composites with 20 wt% AMWs reached 66.68 °C, which was 9.12 °C higher than that of neat PBT. Differential scanning calorimetry analysis results showed that heterogeneous nucleation could be well achieved when the filling content was 15 wt%; impact and scanning electron microscope analysis results showed that due to the partial core-shell structure of the AMWs, the impact strength of PBT was significantly improved after filling. When the filling amount was 20 wt%, the impact strength of the PBT composites reached 23.20 kJ/m2, which was 17.94 kJ/m2 higher than that of neat PBT. This research will not only provide new insights into the efficient and high-value utilization of AMWs, but also provide a good reference for improved applications of other polymers.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350039
Author(s):  
L. G. FURLAN ◽  
RICARDO V. B. OLIVEIRA ◽  
ANDRÉIA C. E. MELLO ◽  
SUSANA A. LIBERMAN ◽  
MAURO A. S. OVIEDO ◽  
...  

The preparation of high-impact polypropylene nanocomposites with different organo-montmorillonite (O-MMT) contents by means of meltprocessing was investigated. The nanocomposite properties were evaluated by transmission electron microscopy (TEM), flexural modulus, izod impact strength, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was noticed that the PP/O-MMT nanocomposites properties were affected by clay content. Exceptional improvements in impact strength were obtained (maximum of 185%) by the use of low O-MMT content. The results showed that higher enhancement on mechanical/thermal properties was obtained by 3 wt.% of O-MMT instead of higher quantities.


2020 ◽  
pp. 089270572093915
Author(s):  
Metehan Atagür ◽  
Nusret Kaya ◽  
Tuğçe Uysalman ◽  
Cenk Durmuşkahya ◽  
Mehmet Sarikanat ◽  
...  

In this study, the performance of sandalwood (SW), as an efficient potential filler material for high-density polyethylene (HDPE), was investigated in detail. Firstly, the characterization of SW was conducted by the determination of chemical composition with chemical and thermal analysis methods. The distribution of SW particles, which were used in composite fabrication, was obtained by using a dynamic light scattering analyzer. Then, the composites of SW, whose weight fractions varied from 5% to 20%, with HDPE were produced in a high-speed thermokinetic mixer. The detailed characterization of composites was made by using thermogravimetric analysis, scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, dynamic mechanical analysis (DMA), Fourier transform infrared, thermal conductivity measurements, and tensile and three-point bending tests. From DMA, storage modulus and loss modulus values of the HDPE matrix increased with increasing the weight fraction of SW. It is clearly seen that SW incorporation into HDPE at weight fractions of 5% and 20% exhibited the best improvement in terms of tensile and flexural strengths, respectively. It can be noted that the reinforcement effect of SW for HDPE is more prominent at high temperatures.


2018 ◽  
Vol 773 ◽  
pp. 51-55
Author(s):  
Jasmine Pongkasem ◽  
Saowaroj Chuayjuljit ◽  
Phasawat Chaiwutthinan ◽  
Amnouy Larpkasemsuk ◽  
Anyaporn Boonmahitthisud

In this study, poly(lactic acid) (PLA) was melt mixed with three weight percentages (10–30wt%) of ethylene vinyl acetate copolymer (EVA) in an internal mixer, followed by a compression molding. According to a better combination of mechanical properties, the 90/10 (w/w) PLA/EVA was selected for preparing hybrid nanocomposites with three loadings (1, 3 and 5 parts per hundred of resin , phr) of poly(methyl methacrylate)-encapsulated nanosilica (PMMA-nSiO2). The nanolatex of PMMA-nSiO2 was synthesized via in situ differential microemulsion polymerization. The obtained PMMA-nSiO2 showed a core-shell morphology with nSiO2 as a core and PMMA as a shell, having an average diameter of 43.4nm. The influences of the EVA and PMMA-nSiO2 on the impact strength and the tensile properties of the PLA/EVA nanocomposites were studied and compared. It is found that the impact strength and the tensile properties of the 90/10 (w/w) PLA/EVA were improved with the appropriate amounts of the EVA and PMMA-nSiO2.


2012 ◽  
Vol 535-537 ◽  
pp. 103-109 ◽  
Author(s):  
Xiang Min Xu ◽  
Li Ping Guo ◽  
Yu Dong Zhang ◽  
Zhi Jun Zhang

The polyoxymethylene-based composites containing reactable nano-SiO2were prepared in a twin-screw extruder by melt compounding, and mechanical and thermal properties of pure polyoxymethylene (POM) and composites were investigated. The results showed that reactable nano-SiO2could reinforce the tensile strength and Young’s modulus of composites. To the impact strength of composites, there was obvious improvement when a small amount of silica was added into POM. With the increase of silica content, the impact strength of composites showed a gradually decrease trend. It was worthy to note that reactable nano-SiO2could significantly increase the decomposition temperature of POM. When the content of reactaSubscript textble nano-SiO2was up to 5 wt%, the degradation temperature of composites could increase about 38.3°C under nSubscript textitrogen atmosphere and 43.8°C under air atmosphere, respectively, compared with pure POM. Furthermore, the differential scanning calorimetry (DSC) analysis showed that reactable nano-SiO2had a good heterogeneous nucleation capability in POM, and could increase crystallization temperature of POM, but surface structure of reactable nano-SiO2was not propitious to the growth of POM crystals, accordingly leading to the decreasing crystallinity of composites.


2014 ◽  
Vol 554 ◽  
pp. 62-65 ◽  
Author(s):  
Noora Tiqah Mohamad Fauzi ◽  
Zurina Mohamad

The objective of this study is to investigate the effect of sepiolite concentration (2-10 phr) on the mechanical properties of polyamide 6 (PA6) / ethylene vinyl acetate (EVA) blend at the ratio 80/20. Twin screw extruder and injection moulding machine were used to prepare the samples. The strength and modulus of flexural was increased until 6 phr of sepiolite content. On the other hand, the impact strength of PA6/EVA/sepiolite composite was decreased gradually as sepiolite content increased.


2015 ◽  
Vol 35 (4) ◽  
pp. 349-357 ◽  
Author(s):  
Jan Simek ◽  
Veronika Dockalova ◽  
Zdenek Hrdlicka ◽  
Vratislav Duchacek

Abstract Polyamide 11 (PA 11)/polyamide 12 (PA 12) blends with and without liquid polybutadiene (LB) containing isocyanate end groups (LBD) were prepared in the Brabender plastograph. The rubber was added in order to increase the impact strength of the polyamides. Tensile strength and elongation at the upper yield point and hardness were also measured. Thermal properties were determined by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Fourier transform infrared (FTIR) spectroscopy was used to determine functional groups of polyamides and to reveal possible reactions between the polyamides and LBD. Intrinsic viscosity, measured by an Ubbelohde viscometer, was used to calculate molar mass. The LB has been found as a useful modifier of impact strength.


2020 ◽  
Vol 54 (28) ◽  
pp. 4441-4455
Author(s):  
JE Rodriguez ◽  
DH Giraldo ◽  
JC Restrepo ◽  
HA Colorado

Semicrystalline polymeric systems are a type of Shape Memory Polymer (SMP), which are more straightforward to synthesize in comparison with other class of stimulus-responsive polymers. On these systems, the shape memory is triggered by temperature and partially driven by crystallization-induced elongation, heating-induced contraction, and elastic entropy. However, a stable temporary and permanent shape through cycling is not easy to achieve. For that reason, a laminar composite made based in the encapsulation of ethylene vinyl acetate (EVA) inside a PU matrix was developed, with the aim of obtaining an actuator with a preferred deformation direction and stable change of shape. In this study, chemically cross-linked ethylene vinyl acetate copolymer (cEVA) as SMP was synthesized and functionalized as a reinforcing strip. A temperature-memory actuator composite was manufactured by the encapsulation of a shape memory programmed strip in an elastomer matrix. The shape memory properties and thermocycling assessment were evaluated using differential scanning calorimetry and dynamic mechanical analysis. Results show the ability of the actuator to bend and unbend, following multiple consecutive heating-cooling cycles. The relationship between the strip, the matrix, and the interface is critical in the bending and shape memory maintenance.


2013 ◽  
Vol 594-595 ◽  
pp. 745-749
Author(s):  
Farizah Hamid ◽  
Suffiyana Akhbar ◽  
Ku Halim Ku Hamid

This paper study the effective toughening of polymer nanocomposites in order to have a balance stiffness, strength and toughness by incorporation of EVA as impact modifier and organoclay as a filler. In this research, rubber toughened PA6/HDPE blends nanocomposites were blended with 1 to 5 phr of ethylene vinyl acetate (EVA) with incorporation of 5wt% organoclay (MMT) in the presence of HDPE-g-MAH as compatibilizer. The mechanical properties of the samples such as tensile test and tensile modulus were measured by universal tensile machine whiles impact strength and hardness was measured using Izod Impact Tester and Rockwell hardness tester. The composites were characterized by Fourier Transform Infrared (FTIR) spectrophotometer and Thermogravimetric Analyzer (TGA). The results exhibited enhancement of mechanical properties with incorporation of 1 phr EVA but slightly decreased for further addition of EVA content. FTIR analysis showed that both samples with and without EVA presented almost the same trend. TGA stability exhibit samples containing EVA showed lower stability than sample with EVA. Conversely, addition of EVA greatly increases the impact strength as well as improved the toughness of the composites.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Zhihui Sun ◽  
Li Zhang ◽  
Duoping Liang ◽  
Wei Xiao ◽  
Jing Lin

In this work, polylactic acid (PLA) biocomposites reinforced with short coir fibers were fabricated using a corotating twin-screw extruder and injection molding machine. Short coir fibers were treated by mixed solution including hydrogen peroxide and sodium hydroxide to improve the adhesion between fibers and PLA matrix. The effects of treated coir fiber content (1, 3, 5, and 7 wt%) on tensile, impact, thermal properties, and surface morphology of PLA biocomposites were investigated. The best impact strength results were obtained for 3 wt% PLA/treated coir fiber biocomposites, where the impact strength was increased by approximately 28% compared to the neat PLA. The tensile modulus of PLA biocomposites was increased by increasing the treated coir fiber content. These results were confirmed by morphological structure analysis. Differential scanning calorimetry (DSC) results demonstrated a minor effect of the treated coir fiber on thermal behavior of PLA resin. Thermogravimetry analysis (TGA) demonstrated that the thermal stability of the PLA/treated coir fiber biocomposites was reduced by the incorporation of treated coir fiber.


Sign in / Sign up

Export Citation Format

Share Document