Estimation of HSQ Resist Profile by Using High Contrast Developement Model for High Resolution EB Lithography

2013 ◽  
Vol 596 ◽  
pp. 97-100
Author(s):  
Hui Zhang ◽  
Takuya Komori ◽  
Jing Liu ◽  
Yu Long Zhang ◽  
Zulfakri bin Mohamad ◽  
...  

We calculated thehydrogen silsesquioxane (HSQ) resistprofiles with different contrast developers (γ from 1.9 to 8.1) to reveal the effect of resist contrast on pattern resolution performance. Based on our home-made development modeling, the suitable energy deposition distribution (EDD) regions for various developers were determined by evaluating the quality of simulated patterns. High contrast TMAH 2.3 wt%/NaCl 4 wt% developer was demonstrated that it is suitable to form very fine dot arrays with a size of 7 nm. Low contrast developer has the limitation of forming fine pattern with sufficient height. The simulation results indicated that increasing developer contrast is benefit to improve pattern resolution.

Author(s):  
Russell L. Steere ◽  
Eric F. Erbe ◽  
J. Michael Moseley

We have designed and built an electronic device which compares the resistance of a defined area of vacuum evaporated material with a variable resistor. When the two resistances are matched, the device automatically disconnects the primary side of the substrate transformer and stops further evaporation.This approach to controlled evaporation in conjunction with the modified guns and evaporation source permits reliably reproducible multiple Pt shadow films from a single Pt wrapped carbon point source. The reproducibility from consecutive C point sources is also reliable. Furthermore, the device we have developed permits us to select a predetermined resistance so that low contrast high-resolution shadows, heavy high contrast shadows, or any grade in between can be selected at will. The reproducibility and quality of results are demonstrated in Figures 1-4 which represent evaporations at various settings of the variable resistor.


2021 ◽  
Vol 2021 (29) ◽  
pp. 83-88
Author(s):  
Sahar Azimian ◽  
Farah Torkamani Azar ◽  
Seyed Ali Amirshahi

For a long time different studies have focused on introducing new image enhancement techniques. While these techniques show a good performance and are able to increase the quality of images, little attention has been paid to how and when overenhancement occurs in the image. This could possibly be linked to the fact that current image quality metrics are not able to accurately evaluate the quality of enhanced images. In this study we introduce the Subjective Enhanced Image Dataset (SEID) in which 15 observers are asked to enhance the quality of 30 reference images which are shown to them once at a low and another time at a high contrast. Observers were instructed to enhance the quality of the images to the point that any more enhancement will result in a drop in the image quality. Results show that there is an agreement between observers on when over-enhancement occurs and this point is closely similar no matter if the high contrast or the low contrast image is enhanced.


Author(s):  
S. Saito ◽  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

Field emission scanning electron microscope (FESEM) features extremely high resolution images, and offers many valuable information. But, for a specimen which gives low contrast images, lateral stripes appear in images. These stripes are resulted from signal fluctuations caused by probe current noises. In order to obtain good images without stripes, the fluctuations should be less than 1%, especially for low contrast images. For this purpose, the authors realized a noise compensator, and applied this to the FESEM.Fig. 1 shows an outline of FESEM equipped with a noise compensator. Two apertures are provided gust under the field emission gun.


Author(s):  
Benjamin M. Siegel

The potential advantages of high voltage electron microscopy for extending the limits of resolution and contrast in imaging low contrast objects, such as biomolecular specimens, is very great. The results of computations will be presented showing that at accelerating voltages of 500-1000 kV it should be possible to achieve spacial resolutions of 1 to 1.5 Å and using phase contrast imaging achieve adequate image contrast to observe single atoms of low atomic number.The practical problems associated with the design and utilization of the high voltage instrument are, optimistically, within the range of competence of the state of the art. However, there are some extremely important and critical areas to be systematically investigated before we have achieved this competence. The basic electron optics of the column required is well understood, but before the full potential of an instrument capable of resolutions of better than 1.5 Å are realized some very careful development work will be required. Of great importance for the actual achievement of high resolution with a high voltage electron microscope is the fundamental limitation set by the characteristics of the high voltage electron beam that can be obtained from the accelerator column.


Author(s):  
Keiichi Tanaka

With the development of scanning electron microscope (SEM) with ultrahigh resolution, SEM became to play an important role in not only cytology but also molecular biology. However, the preparation methods observing tiny specimens with such high resolution SEM are not yet established.Although SEM specimens are usually coated with metals for getting electrical conductivity, it is desirable to avoid the metal coating for high resolution SEM, because the coating seriously affects resolution at this level, unless special coating techniques are used. For avoiding charging effect without metal coating, we previously reported a method in which polished carbon plates were used as substrate. In the case almost all incident electrons penetrate through the specimens and do not accumulate in them, when the specimens are smaller than 10nm. By this technique some biological macromolecules including ribosomes, ferritin, immunoglobulin G were clearly observed.Unfortunately some other molecules such as apoferritin, thyroglobulin and immunoglobulin M were difficult to be observed only by the method, because they had very low contrast and were easily damaged by electron beam.


Author(s):  
Maksim Zhmakin ◽  
Irina Chadyuk ◽  
Aleksey Nadymov

A variant of implementation of a communication system with direct spread spectrum is presented in this article, simulation results are also presented, the main parameters of the system are taken, and conclusions are drawn.


Author(s):  
Po Fu Chou ◽  
Li Ming Lu

Abstract Dopant profile inspection is one of the focused ion beam (FIB) physical analysis applications. This paper presents a technique for characterizing P-V dopant regions in silicon by using a FIB methodology. This technique builds on published work for backside FIB navigation, in which n-well contrast is observed. The paper demonstrates that the technique can distinguish both n- and p-type dopant regions. The capability for imaging real sample dopant regions on current fabricated devices is also demonstrated. SEM DC and FIB DC are complementary methodologies for the inspection of dopants. The advantage of the SEM DC method is high resolution and the advantage of FIB DC methodology is high contrast, especially evident in a deep N-well region.


Author(s):  
Ge Weiqing ◽  
Cui Yanru

Background: In order to make up for the shortcomings of the traditional algorithm, Min-Min and Max-Min algorithm are combined on the basis of the traditional genetic algorithm. Methods: In this paper, a new cloud computing task scheduling algorithm is proposed, which introduces Min-Min and Max-Min algorithm to generate initialization population, and selects task completion time and load balancing as double fitness functions, which improves the quality of initialization population, algorithm search ability and convergence speed. Results: The simulation results show that the algorithm is superior to the traditional genetic algorithm and is an effective cloud computing task scheduling algorithm. Conclusion: Finally, this paper proposes the possibility of the fusion of the two quadratively improved algorithms and completes the preliminary fusion of the algorithm, but the simulation results of the new algorithm are not ideal and need to be further studied.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1400
Author(s):  
Muhammad Adnan ◽  
Jawaid Iqbal ◽  
Abdul Waheed ◽  
Noor Ul Amin ◽  
Mahdi Zareei ◽  
...  

Modern vehicles are equipped with various sensors, onboard units, and devices such as Application Unit (AU) that support routing and communication. In VANETs, traffic management and Quality of Service (QoS) are the main research dimensions to be considered while designing VANETs architectures. To cope with the issues of QoS faced by the VANETs, we design an efficient SDN-based architecture where we focus on the QoS of VANETs. In this paper, QoS is achieved by a priority-based scheduling algorithm in which we prioritize traffic flow messages in the safety queue and non-safety queue. In the safety queue, the messages are prioritized based on deadline and size using the New Deadline and Size of data method (NDS) with constrained location and deadline. In contrast, the non-safety queue is prioritized based on First Come First Serve (FCFS) method. For the simulation of our proposed scheduling algorithm, we use a well-known cloud computing framework CloudSim toolkit. The simulation results of safety messages show better performance than non-safety messages in terms of execution time.


Sign in / Sign up

Export Citation Format

Share Document