A 16 Bits Sigma-Delta Modulator Applied in Gyroscope

2014 ◽  
Vol 609-610 ◽  
pp. 1077-1081
Author(s):  
Qiang Fu ◽  
Wei Ping Chen ◽  
Ying Kai Zhao ◽  
Liang Yin ◽  
Xiao Wei Liu

In this paper, a 4th-order sigma-delta modulator applied in gyroscope is presented. This modulator adopts the 2-1-1 Multi stage noise shaping structure. The bandwidth of signal is 100 KHz, the over sample rate is 64, and sample frequency is 12.8MHz. By the MATLAB Simulink modeling and simulation, when the input signal is 100 KHz, the SNDR of the MASH ADC is 121.8dB, and the effective number of bit is 19.93 in ideal situation. After considering non-ideal factors, the SNDR is 111.6dB, the effective number of bit of ADC is 18.28. Compared with the ideal situation, the noise floor of PSD has increased 40dB. It explains that non-ideal factors have a significant effect on the performance of the sigma-delta ADC. The 4th-order MASH sigma-delta modulator has been implemented under 0.5 um CMOS process and simulated under Cadence. The final simulation results show that SNDR is 112.4 dB and effective number of bits (ENOB) is 18.6.

2014 ◽  
Vol 609-610 ◽  
pp. 1266-1270
Author(s):  
Jian Yang ◽  
Liang Liu ◽  
Qiu Ye Lv ◽  
Xiao Wei Liu ◽  
Liang Yin

In this paper a high-order sigma-delta modulator applied in micro-accelerometer is designed. The modulator chooses the distributed feedback structure. And the signal bandwidth is 500Hz, the oversampling ratio is 250 and sampling frequency is 250KHz. By the MATLAB Simulink simulation, when the input signal is 1g, and the signal frequency is 250Hz, the simulation result is that the noise level is-160dBV at the signal frequency in the ideal situation. And when considering the non-ideal factors, the simulation result shows that the noise level at the input accelerated signal is 20dBV higher than the ideal. The overall circuit was implemented under 0.5 um CMOS process and simulated in Cadence Spectre. The final simulation results show that the signal to noise ratio (SNR) is 97.1dB.


2019 ◽  
Vol 29 (07) ◽  
pp. 2050108
Author(s):  
Di Li ◽  
Chunlong Fei ◽  
Qidong Zhang ◽  
Yani Li ◽  
Yintang Yang

A high-linearity Multi-stAge noise SHaping (MASH) 2–2–2 sigma–delta modulator (SDM) for 20-MHz signal bandwidth (BW) was presented. Multi-bit quantizers were employed in each stage to provide a sufficiently low quantization noise level and thus improve the signal-to-noise ratio (SNR) performance of the modulator. Mismatch noise in the internal multi-bit digital-to-analog converters (DACs) was analyzed in detail, and an alternative randomization scheme based on multi-layer butterfly-type network was proposed to suppress spurious tones in the output spectrum. Fabricated in a 0.18-[Formula: see text]m single–poly 4-metal Complementary Metal Oxide Semiconductor (CMOS) process, the modulator occupied a chip area of 0.45[Formula: see text]mm2, and dissipated a power of 28.8[Formula: see text]mW from a 1.8-V power supply at a sampling rate of 320[Formula: see text]MHz. The measured spurious-free dynamic range (SFDR) was 94[Formula: see text]dB where 17-dB improvement was achieved by applying the randomizers for multi-bit DACs in the first two stages. The peak signal-to-noise and distortion ratio (SNDR) was 76.9[Formula: see text]dB at [Formula: see text]1 dBFS @ 2.5-MHz input, and the figure-of-merit (FOM) was 126[Formula: see text]pJ/conv.


2015 ◽  
Vol 645-646 ◽  
pp. 548-554
Author(s):  
Fu Xiang Huang ◽  
Zhi Qiang Gao ◽  
Xiao Wei Liu

Due to the huge potential applications in military and civil fields, silicon micro mechanical gyro has become the most popular research direction in MEMS field today. Therefore, the corresponding interface circuit of silicon gyroscope has also become a hot topic at home and abroad. Now, integration, digitalization and intelligence has become the focus of future research directions of silicon gyroscope, so the research of analog to digital conversion circuit for gyroscope has become a research priority. Therefore, the conduct of Sigma Delta ADCs research for silicon gyro interface circuit has a very important significance and application prospects.This topic briefly introduces the working principle of Sigma Delta ADC. Based on the requirements of the modulator design, Sigma Delta modulator structures are carefully analyzed and also carried on the comparison and optimization. Hereby, a three order three bits quantization in single-loop with partial feedback of feed-forward summation system structure for modulator is designed in this paper, and then the ideal model of modulator system in Matlab is simulated. In addition, the focus of this topic is mainly on the nonlinear factors analysis and modeling, and the Data Weighted Average (DWA) technique used in multi-bit quantization is introduced as well as modeling in system level. Then, the non-ideal modeling of system is simulated in Matlab.In system level design, this paper adopts feed-forward summation and multi-bit quantization structure to reduce the output of the integrator, increase the noise performance of the modulator, and make it easier for the system stability. Furthermore, the use of partial feedback in the structure for zero-point optimization improves the noise shaping ability in signal bandwidth of modulator. This topic employs the single-loop third-order three-bit quantization structure, with the sampling rate 64, signal bandwidth 200 K Hz and the sampling clock frequency 25.6 MHz. For the ideal modeling, the Signal-to-Noise Ratio (SNR) is 125dB, and the Effective Number of Bits (ENOB) is 20.48. When in consideration of modulator’s nonlinear factors, the nonlinear systems Simulink simulation results obtained SNR of 104dB, and the ENOB is 16.98.In order to reduce the harmonic distortion of the modulator, transistor level is implemented by fully-differential switch capacitor circuit. The structure at all levels of the integrator was optimized. To reduce the influence of flicker noise, the integrator adopts Correlated Double Sampling (CDS) technology, and is improved by the partial feedback circuit. The fully-differential operational amplifier with high slew-rate and high bandwidth is designed, and uses switch capacitor circuit as common-mode feedback. Dynamic comparator and multi-bit quantizer are designed to improve the speed of the quantizer and reduce power consumption. The design the nonlinear compensation feedback DAC module--DWA module circuit--realizes noise shaping of capacitance matching error. The overall circuit was simulated in Cadence by 0.6um process. Transistor-level simulation result shows that the SNR is 101.3dB, and the effective number of bits is 16.54bits. The simulation results are consistent with the established non-ideal model of modulator, which verifies the correction of system level design method.


2013 ◽  
Vol 562-565 ◽  
pp. 311-316
Author(s):  
Xiao Wei Liu ◽  
Qiang Li ◽  
Guan Nan Sun ◽  
Wen Yan Liu

The theory of a Sigma-Delta modulator is introduced in this paper. Based on this theory, a feedback 2-1-1 multi-stage-noise-shaping (MASH) sigma-delta modulator is designed, and the coefficients of the modulator are calculated. The system-level simulation results show that the effective number of bits (ENOB) is 24 bits when the signal bandwidth is 1 kHz and the over-sampling (OSR) rate is 128. Then the circuits of modulator are designed, including integrator, comparator, multi-phase clock and the noise cancelling logic. The whole modulator is simulated in Cadence, the signal to noise ratio (SNR) of the modulator is 125.4dB, and the ENOB is 21.1bits, which meet the technical requirements of the sensor.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 372 ◽  
Author(s):  
Risheng Lv ◽  
Weiping Chen ◽  
Xiaowei Liu

This paper presents a multi-stage noise shaping (MASH) switched-capacitor (SC) sigma-delta (ΣΔ) analog-to-digital converter (ADC) composed of an analog modulator with an on-chip noise cancellation logic and a reconfigurable digital decimator for MEMS digital gyroscope applications. A MASH 2-1-1 structure is employed to guarantee an absolutely stable modulation system. Based on the over-sampling and noise-shaping techniques, the core modulator architecture is a cascade of three single-loop stages containing feedback paths for systematic optimization to avoid deterioration in conversion accuracy caused by capacitor mismatch. A digital noise cancellation logic is also included to eliminate residual quantization errors in the former two stages, and those in the last stage are shaped by a fourth-order modulation. A multi-rate decimator follows the analog modulator to suit variable gyroscope bandwidth. Manufactured in a standard 0.35 μm CMOS technology, the whole chip occupies an area of 3.8 mm2. Experimental results show a maximum signal-to-noise ratio (SNR) of 100.2 dB and an overall dynamic range (DR) of 107.6 dB, with a power consumption of 3.2 mW from a 5 V supply. This corresponds to a state-of-the-art figure-of-merit (FoM) of 165.6 dB.


2014 ◽  
Vol 609-610 ◽  
pp. 964-967
Author(s):  
Jia Jun Zhou ◽  
Di Wang ◽  
Ying Kai Zhao ◽  
Hong Lin Xu ◽  
Xiao Wei Liu

In this paper, in order to enhance resolution and guarantee the stability of the micro-gyroscope, a high-resolution lowpass sigma-delta modulator is proposed. It employs single-loop fourth-order and full differential structure. The simulated result on the Simulink platform shows that the SNDR is 105.4dB and the effective number of bits (ENOB) is 17.22bits. The entire circuits are implemented with 0.5μm CMOS process. The simulated result on Cadence shows that the SNDR is 99.7dB. The modulator operates at a sampling frequency of 25.6MHz and the signal bandwidth is 100kHz with 128 oversampling ratio (OSR). The dynamic range (DR) is 120 dB approximately and the SNDR changes linearly with the input level.


2014 ◽  
Vol 609-610 ◽  
pp. 723-727
Author(s):  
Wen Jie Fan ◽  
Qiu Ye Lv ◽  
Chong He ◽  
Liang Yin ◽  
Xiao Wei Liu

Sigma-delta ADC outperforms the Nyquist ADC in precision and robustness by using oversampling and noise shaping. A fourth-order sigma-delta modulator of input feedforward architecture is designed and simulated in system-level. Input feedforward architecture has advantages of low output swing of integrators and simple structure. Proper circuit parameters are also presented in this paper. The simulation revealed that the modulator achieves 109 dB dynamic range in a signal bandwidth of 1 KHz with a sampling frequency of 250 KHz.


Sign in / Sign up

Export Citation Format

Share Document