Key Performance Indicators of Tubes Used as Energy Absorbers

2014 ◽  
Vol 626 ◽  
pp. 155-161 ◽  
Author(s):  
T.X. Yu ◽  
Yan Fei Xiang ◽  
Min Wang ◽  
Li Ming Yang

Based on our extensive studies on the experimental, theoretical and numerical results on various tubes under axial compression/impact in the last few years, we propose a set of Key Performance Indicators (KPIs) to assess and compare the energy absorbing performance of tubular structures with various configurations, so as to guide the design of energy absorbers whilst to archive a certain degree of optimization. The KPIs have five factors: Effective stroke ratio (ESR), Non-dimensional Load-carrying capacity (NLC), Effectiveness of energy absorption (EEA), Specific energy absorption capacity (SEA), Stableness of load-carrying capacity (SLC).The paper presents a series of diagrams to compare the energy absorbing performance of various tubes in terms of the four KPIs as described above. The work is valuable to engineering designs and applications, as well as to the further studies of the topic.

2015 ◽  
Vol 07 (04) ◽  
pp. 1550060 ◽  
Author(s):  
Yanfei Xiang ◽  
Min Wang ◽  
Tongxi Yu ◽  
Liming Yang

Based on a systematic investigation on the experimental, theoretical and numerical results on various tubes under axial compression/impact including our own tests, a set of key performance indicators (KPIs) for assessing and comparing the energy absorbing performance of tubular structures with various configurations is proposed, so as to guide the design of energy absorbers whilst to facilitate parameter optimization. The five KPIs proposed on the basis of mechanical analyses are effective stroke ratio (ESR), nondimensional load-carrying capacity (NLC), specific energy absorption (SEA), effectiveness of energy absorption (EEA) and undulation of load-carrying capacity (ULC). Moreover, by considering the influence of foam filling, these five KPIs are also modified and extended to the foam-filled tubes. The paper presents a series of diagrams to compare the energy absorbing performance of various tubes in terms of the five KPIs as described above. It transpires that the energy absorption performance of circular tubes is superior to that of square tubes. It is also confirmed that the mass of foam fillers results in reductions of SEA and EEA, though foam fillers will greatly improve the NLC of empty tubes. The novelty of the present study is displayed on the following aspects: (1) uniquely defining the effective stroke by the maximum point of "energy efficiency" f so as to avoid ambiguity which appeared in the literature; (2) instead of a single indicator such as SEA, proposing a set of five KPIs to comprehensively assess the performance of energy absorbers and (3) validating the usefulness of the proposed KPIs by comparing the performance of various tubular structures used as energy absorbers.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
S. Talukdar ◽  
N. Banthia

A study was carried out to investigate the use of Sprayed Fiber Reinforced Polymer (SFRP) for retrofit of timber beams. A total of 10-full scale specimens were tested. Two different timber preservatives and two different bonding agents were investigated. Strengthening was characterized using load deflection diagrams. Results indicate that it is possible to enhance load-carrying capacity and energy absorption characteristics using the technique of SFRP. Of the two types of preservatives investigated, the technique appears to be more effective for the case of creosote-treated specimens, where up to a 51% improvement in load-carrying capacity and a 460% increase in the energy absorption capacity were noted. Effectiveness of the bonding agent used was dependent on the type of preservative the specimen had been treated with.


2019 ◽  
Vol 3 (1) ◽  
pp. 13 ◽  
Author(s):  
Sanjeev Rao ◽  
Jimmy Thomas ◽  
Alia Aziz ◽  
Wesley Cantwell

In this work, the manufacturing characteristics and a performance evaluation of carbon fiber–reinforced epoxy honeycombs are reported. The vacuum-assisted resin transfer molding process, using a central injection point, is used to infuse a unidirectional dry slit tape with the epoxy resin system Prime 20 LV in a wax mold. The compression behavior of the manufactured honeycomb structure was evaluated by subjecting samples to quasi-static compression loading. Failure criteria for the reinforced honeycombs were developed and failure maps were constructed. These maps can be used to evaluate the reliability of the core for a prescribed loading condition. Improvements in the load-carrying capacity for the reinforced samples, as compared with unreinforced specimens, are discussed and the theoretical predictions are compared with the experimental data. The compression test results highlight a load-carrying capacity up to 26 kN (~143 MPa) for a single hexagonal cell (unit cell) and 160 kN (~170 MPa) for cores consisting of 2.5 × 3.5 cells. The failure map indicates buckling to be the predominant mode of failure at low relative densities, shifting to cell wall fracture at relative densities closer to a value of 10−1. The resulting energy absorption diagram shows a monotonic increase in energy absorption with the increasing t/l ratio of the honeycomb core cell walls.


2015 ◽  
Vol 828-829 ◽  
pp. 259-264 ◽  
Author(s):  
Ping Zhou ◽  
Elmar Beeh ◽  
Horst E. Friedrich ◽  
Michael Kriescher ◽  
Philipp Straßburger ◽  
...  

Quasi-static/dynamic three-point bending tests were conducted to assess the crash performance of magnesium alloy AZ31B extruded and sheet tubes at the German Aerospace Centre (DLR) – Institute of Vehicle Concepts in Stuttgart. Different foam-filled AZ31B beams with a variation of foam density and thickness were fabricated through several manufacturing processes: cold bending, tungsten inert gas welding, cathodic dip painting and polyurethane foam injection. The experimental results were compared with those from mild steel DC04 tubes. It shows that empty magnesium alloy AZ31B outperforms steel DC04 in terms of specific energy absorption for the empty tubes with equivalent volume when subjected to bending loads. It was found that the foam-filled tubes achieved much higher load carrying capacity and specific energy absorption than the empty tubes. Moreover, there is a tendency showing that a foam-filled beam with a higher foam density reaches higher load carrying capacity, but fractures earlier. The foam-filled AZ31B tube with 0.20 g/cm3foam obtained the highest specific energy absorption, but this outperformance was weakened due to the earlier fracture. In addition, the numerical simulation utilising material model MAT_124 in LS-DYNA explicit FEA package was performed. The simulation results indicate that using calibrated stress-strain curves and failure parameters, material model MAT_124 yields a general good agreement with the experimental results.


2020 ◽  
Vol 6 (10) ◽  
pp. 1876-1894
Author(s):  
Wathiq Jassim ◽  
Samir M. Chassib

This paper presented an extensive study about the strengthening of RC square short columns with high strength concrete jackets reinforced with steel fiber. The aim of this study is to investigate the effect of confinement by fibrous jacket on the behavior of RC column. A comparative study is performed on 23 square columns (six of them were unconfined columns where the remaining seventeen were confined columns) with varied parameters such as steel fibers ratio and type, jacket thickness, partial and full strengthening, type of confining jacket (hoop and composite), use of epoxy as bond material between the concrete column and strengthening jacket, and length parameter. The test results showed that the strengthened columns showed a significant improvement in the ultimate stress, load-carrying capacity, maximum strain, ductility, and energy absorption. Increase the steel fibers ratio (1, 1.5 and 2%) increased the ultimate stress by (22.5, 12.3 and 12.5%) respectively. The use of epoxy as bond material enhanced the ultimate stress by an average improvement by (55%). Composite case in the strengthening enhanced the load-carrying capacity larger than hoop case by (28.7 and 42%) for FRC jackets with hooked and straight fibers respectively but in case of stress capacity, hoop jacket carries stresses more than composite according to the stressed cross-sectional area. Increase jacket thickness (25 and 35 mm) enhanced the ultimate stress by (28.7 and 15.5%) respectively. Partial strengthening has a good enhancement in the ultimate load but was less than full strengthening. Increase the length by (25 cm) decreased the enhancement in load capacity of the column with hoop jacket by (45.3%). Concrete jackets enhanced Energy absorption and ductility which improved the deformation capacity. The compressive behavior of stub concrete columns was also modeled, simulated, and analyzed numerically by a 3D nonlinear finite element model. The verification process was performed against the reported data of the experimental test which proved the results of experimental results and showed a good agreement between experimental and numerical outcomes.


2009 ◽  
Vol 618-619 ◽  
pp. 523-526
Author(s):  
Tim B. Hilditch ◽  
Dale Atwell ◽  
Aiden G. Beer

The performance of extruded AZ31, AZ61 and AM-EX1 tubes was examined in three-point bending. Different extrusion temperatures were used to investigate the effect of grain size on the load-carrying capacity, energy absorption and fracture propensity of the tubes. Results showed that while the peak load increased with a smaller average recrystallised grain size, the retention of large elongated un-recrystallised grains in the microstructure reduced the load. The presence of the large elongated grains also appeared detrimental to the ability of the tube to deform before fracture.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Cunao Feng ◽  
Dekun Zhang ◽  
Kai Chen ◽  
Yongbo Guo

The purpose of this study is to explore the effect of water on the contact and friction properties of a friction lining. The results show that the water absorption capacity and the sensitivity to the water molecules of the friction lining determine the load-carrying capacity. The change of the actual contact area is related to the load-carrying capacity under dripping water condition. The presence of water played a role in lubricating the surface, which resulted in a reduction of the friction coefficient. In addition, water absorbed onto the surface of the lining to produce an absorbent layer, and the load-carrying capacity of the absorbent layer exerted a more intuitive effect on the friction coefficient.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4857
Author(s):  
Michal Rogala ◽  
Jakub Gajewski ◽  
Miroslaw Ferdynus

Crashworthiness of conical shells is known to depend on various factors. This study sets out to determine the extent to which the cross-sectional diameter contributes to their energy-absorbing properties. The object of the study was thin-walled aluminium tubes varying in upper diameter and wall thickness. The components were subjected to dynamic axial crushing kinetic energy equal to 1700 J. The numerical analysis was performed using Abaqus 6.14 software. The specific aim of the study was to determine the extent to which variable wall thickness affects the energy absorption capacity of the components under study. From the simulations, we have managed to establish a relationship between total energy absorption capacity and wall thickness. The results from the conducted analyses and the purpose-specific neural networks could provide the base for the future methodology for forecasting and optimisation of energy-absorbing systems.


2016 ◽  
Vol 857 ◽  
pp. 136-141
Author(s):  
P. Gajalakshmi ◽  
S. Aravind ◽  
P. Soundarapandian

Concrete in-filled steel tube (CIFST) columns are mainly used as structural members in buildings located in seismic zones. CIFST columns prone to buckling and technique is required to control the buckling of concrete filled steel tubes when they are subjected to cycles of loading. In this work, CIFST columns wrapped with fibre reinforced polymer laminates (FRPL) to prevent the local buckling. Experimental and analytical study of CIFST columns externally wrapped with FRPL have been conducted. Theoretical study is also conducted to find the ultimate load carrying capacity of CIFST columns. The parameters involved in this investigation are type of fibre and shape of the steel tube. The CIFST columns are tested under lateral loading to determine the number of cycles to failure and energy absorption capacity and to observe the hysteresis behaviour. The analytical study comprises of finite element modeling of CIFST columns wrapped with FRPL. The results obtained from the experimental investigation and finite element model are compared. The results revealed that FRPL wrapped circular CIFST columns have higher load carrying capacity and energy absorption capacity and exhibit ductile behavior when compared to CIFST columns.


Sign in / Sign up

Export Citation Format

Share Document