LASER Reduced Graphene on Flexible Substrate for Strain Sensing Applications: Temperature Effect on Gauge Factor

2015 ◽  
Vol 644 ◽  
pp. 115-119 ◽  
Author(s):  
Sahour Sayed ◽  
Mohammed Gamil ◽  
Ahmed M.R. Fath El-Bab ◽  
Ahmed Abd El Moneim Abd Elmoneim

New technique is developed to synthesize graphene film on flexible substrate for strain sensing applications. A flexible graphene/Poly-ethylene Terephthalate (PET) strain sensor based on graphene piezoresistivity is produced by a new simple low cost technique. Graphene oxide film on PET substrate is reduced and patterned simultaneously using 2 Watt CO2LASER beam. The synthesized graphene film is characterized by XRD, FT-IR, SEM, and Raman techniques. Commercial strain gauges are used to predict experimentally the gauge factor (GF) of the graphene film at different values of applied strain. The stability of the graphene film and its GF are studied at different operating temperatures. The fabricated sensor showed high GF of 78 with great linearity and stability up to 60 °C.

2018 ◽  
Vol 317 ◽  
pp. 164-169 ◽  
Author(s):  
Pengkun Sun ◽  
Huili Lu ◽  
Wanwan Zhang ◽  
Huijiao Wu ◽  
Shaorui Sun ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5486
Author(s):  
Junning Ma ◽  
Dorin Harpaz ◽  
Yang Liu ◽  
Evgeni Eltzov

Bioluminescent bacteria whole-cell biosensors (WCBs) have been widely used in a range of sensing applications in environmental monitoring and medical diagnostics. However, most of them use planktonic bacteria cells that require complicated signal measurement processes and therefore limit the portability of the biosensor device. In this study, a simple and low-cost immobilization method was examined. The bioluminescent bioreporter bacteria was absorbed on a filter membrane disk. Further optimization of the immobilization process was conducted by comparing different surface materials (polyester and parafilm) or by adding glucose and ampicillin. The filter membrane disks with immobilized bacteria cells were stored at −20 °C for three weeks without a compromise in the stability of its biosensing functionality for water toxicants monitoring. Also, the bacterial immobilized disks were integrated with smartphones-based signal detection. Then, they were exposed to water samples with ethanol, chloroform, and H2O2, as common toxicants. The sensitivity of the smartphone-based WCB for the detection of ethanol, chloroform, and H2O2 was 1% (v/v), 0.02% (v/v), and 0.0006% (v/v), respectively. To conclude, this bacterial immobilization approach demonstrated higher sensitivity, portability, and improved storability than the planktonic counterpart. The developed smartphone-based WCB establishes a model for future applications in the detection of environmental water toxicants.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3477 ◽  
Author(s):  
Tao Han ◽  
Anindya Nag ◽  
Roy B. V. B. Simorangkir ◽  
Nasrin Afsarimanesh ◽  
Hangrui Liu ◽  
...  

The paper presents the design and fabrication of a low-cost and easy-to-fabricate laser-induced graphene sensor together with its implementation for multi-sensing applications. Laser-irradiation of commercial polymer film was applied for photo-thermal generation of graphene. The graphene patterned in an interdigitated shape was transferred onto Kapton sticky tape to form the electrodes of a capacitive sensor. The functionality of the sensor was validated by employing them in electrochemical and strain-sensing scenarios. Impedance spectroscopy was applied to investigate the response of the sensor. For the electrochemical sensing, different concentrations of sodium sulfate were prepared, and the fabricated sensor was used to detect the concentration differences. For the strain sensing, the sensor was deployed for monitoring of human joint movements and tactile sensing. The promising sensing results validating the applicability of the fabricated sensor for multiple sensing purposes are presented.


Author(s):  
Mohammad Abshirini ◽  
Mohammad Charara ◽  
Mrinal C. Saha ◽  
M. Cengiz Altan ◽  
Yingtao Liu

Abstract Flexible and sensitive strain sensors can be utilized as wearable sensors and electronic devices in a wide range of applications, such as personal health monitoring, sports performance, and electronic skin. This paper presents the fabrication of a highly flexible and sensitive strain sensor by 3D printing an electrically conductive polydimethylsiloxane (PDMS)/multi-wall carbon nanotube (MWNT) nanocomposite on a PDMS substrate. To maximize the sensor’s gauge factor, the effects of MWNT concentration on the strain sensing function in nanocomposites are evaluated. Critical 3D printing and curing parameters, such as 3D printing nozzle diameter and nanocomposites curing temperature, are explored to achieve the highest piezoresistive response, showing that utilizing a smaller deposition nozzle size and higher curing temperature can result in a higher gauge factor. The optimized 3D printed nanocomposite sensor’s sensitivity is characterized under cyclic tensile loads at different maximum strains and loading rates. A linear piezoresistive response is observed up to 70% strain with an average gauge factor of 12, pointing to the sensor’s potential as a flexible strain sensor. In addition, the sensing function is almost independent of the applied load rate. The fabricated sensors are attached to a glove and used as a wearable sensor by detecting human finger and wrist motion. The results indicate that this 3D printed functional nanocomposite shows promise in a broad range of applications, including wearable and skin mounted sensors.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2742
Author(s):  
Tessa H. T. Myren ◽  
Taylor A. Stinson ◽  
Zachary J. Mast ◽  
Chloe G. Huntzinger ◽  
Oana R. Luca

This work describes new methods for the chemical recycling of end-use poly(ethylene terephthalate) (PET) in batch, microwave and electrochemical reactors. The reactions are based on basic hydrolysis of the ester moieties in the polymer framework and occur under mild reaction conditions with low-cost reagents. We report end-use PET depolymerization in refluxing methanol with added NaOH with 75% yield of terephthalic acid in batch after 12 h, while yields up to 65% can be observed after only 40 min under microwave irradiation at 85 °C. Using basic conditions produced in the electrochemical reduction of protic solvents, electrolytic experiments have been shown to produce 17% terephthalic acid after 1 h of electrolysis at −2.2 V vs. Ag/AgCl in 50% water/methanol mixtures with NaCl as a supporting electrolyte. The latter method avoids the use of caustic solutions containing high-concentration NaOH at the outset, thus proving the concept for a novel, environmentally benign method for the electrochemical recycling of end-use PET based on low-cost solvents (water and methanol) and reagents (NaCl and electricity).


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 565 ◽  
Author(s):  
Tao Han ◽  
Anindya Nag ◽  
Nasrin Afsarimanesh ◽  
Fowzia Akhter ◽  
Hangrui Liu ◽  
...  

This paper presents the fabrication and implementation of novel resistive sensors that were implemented for strain-sensing applications. Some of the critical factors for the development of resistive sensors are addressed in this paper, such as the cost of fabrication, the steps of the fabrication process which make it time-consuming to complete each prototype, and the inability to achieve optimised electrical and mechanical characteristics. The sensors were fabricated via magnetron sputtering of thin-film chromium and gold layer on the thin-film substrates at defined thicknesses. Sticky copper tapes were attached on the two sides of the sensor patches to form the electrodes. The operating principle of the fabricated sensors was based on the change in their responses with respect to the corresponding changes in their relative resistance as a function of the applied strain. The strain-induced characteristics of the patches were studied with different kinds of experiments, such as consecutive bending and pressure application. The sensors with 400 nm thickness of gold layer obtained a sensitivity of 0.0086 Ω/ppm for the pressure ranging between 0 and 400 kPa. The gauge factor of these sensors was between 4.9–6.6 for temperatures ranging between 25 °C and 55 °C. They were also used for tactile sensing to determine their potential as thin-film sensors for industrial applications, like in robotic and pressure-mapping applications. The results were promising in regards to the sensors’ controllable film thickness, easy operation, purity of the films and mechanically sound nature. These sensors can provide a podium to enhance the usage of resistive sensors on a higher scale to develop thin-film sensors for industrial applications.


2015 ◽  
Vol 748 ◽  
pp. 49-52 ◽  
Author(s):  
Xian Li Zong ◽  
Rong Zhu ◽  
Chao Zhang

This paper presents an electric-field assisted hydrothermal seedless synthesis of ZnO nanorods (NRs) on flexible polyimide (PI) substrate and their strain sensing applications. A three-electrode structure including top cathode and anode on PI substrate with a Copper layer on the back of PI (served as bottom gate) was fabricated with photolithography, sputtering and lift-off techniques. Hydrothermal growth of ZnO NRs on and between top cathode and anode (comb-like electrode-pair) was realized in Zn (NO3)2 and HMTA solution whilst an alternating current (AC) electric-field was applied onto the electrodes. The strain sensing properties of the fabricated ZnO NRs device were tested by measuring I-V characteristics of the device under different strains. From strain-free to 0.48% strain, the decrease ratio of the current flowing through the device reached 75% at a bias voltage of 1V.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Binghao Liang ◽  
Zian Zhang ◽  
Wenjun Chen ◽  
Dongwei Lu ◽  
Leilei Yang ◽  
...  

Abstract Flexible and wearable sensing devices have broad application prospects in bio-monitoring such as pulse measurement, motion detection and voice recognition. In recent years, many significant improvements had been made to enhance the sensor’s performance including sensitivity, flexibility and repeatability. However, it is still extremely complicated and difficult to prepare a patterned sensor directly on a flexible substrate. Herein, inspired by typography, a low-cost, environmentally friendly stamping method for the mass production of transparent conductive carbon nanotube (CNT) film is proposed. In this dry transfer strategy, a porous CNT block was used as both the seal and the ink; and Ecoflex film was served as an object substrate. Well-designed CNT patterns can be easily fabricated on the polymer substrate by engraving the target pattern on the CNT seal before the stamping process. Moreover, the CNT film can be directly used to fabricate ultrathin (300 μm) strain sensor. This strain sensor possesses high sensitivity with a gauge factor (GF) up to 9960 at 85% strain, high stretchability (> 200%) and repeatability (> 5000 cycles). It has been used to measure pulse signals and detect joint motion, suggesting promising application prospects in flexible and wearable electronic devices.


Sign in / Sign up

Export Citation Format

Share Document