Study of the Electrophoretic Deposition of Chitosan/Halloysite Nanotubes/Titanium Dioxide Composite Coatings Using Taguchi Experimental Design Approach

2015 ◽  
Vol 654 ◽  
pp. 230-239 ◽  
Author(s):  
Namir S. Jackoub Raddaha ◽  
Sigrid Seuss ◽  
Aldo R. Boccaccini

This study presents experimental results on the electrophoretic deposition (EPD) of chitosan/halloysite nanotube/titanium dioxide composite coatings based on the Taguchi design of experiments (DOE) approach. Taguchi array of L18type with mixed levels of the control factor was used to study the influence of EPD parameters, including halloysite nanotubes concentration, electric voltage and deposition time, on deposition yield. For identifying the significant factors that affected the deposition yield, multivariate analysis of variance (MANOVA) and regression analysis based on partial least-square method were used. The coatings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy analyses, respectively. It was found that the deposition time has significantly influenced the deposition rate but the halloysite nanotube concentration and the applied voltage have the smallest effect on the deposition. The optimum condition for high yield of deposition with low standard deviation is achieved when the concentration of halloysite nanotubes is 0.3 g/L and the applied voltage is 40 volt with 300 sec. as a deposition time. The predicted EPD conditions were verified by experiments and qualitative agreement was obtained.

2013 ◽  
Vol 1578 ◽  
Author(s):  
Vincent Jouenne ◽  
Jean-Luc Duvail ◽  
Luc Brohan ◽  
Mireille Richard-Plouet

ABSTRACTTitanium dioxide nanoparticles were synthesized by solvothermal treatment in the presence of oleic acid and oleylamine. As Ti(IV) reactant, crystals of [Ti8O12 (H2O)24]Cl8, HCl, 7H2O were preferred because their hydrolysis and condensation can be controlled in ethanol/water solution. The organic surfactants allowed the control of the shape and they can be removed by an acid treatment of the particles. The TiO2 nanoparticles can then be re-dispersed in an ethanol-based charging solution. A fixed applied voltage promotes the electrophoretic deposition of the nanoparticles (<15 nm in size) into pores of anodized aluminium oxide (AAO) template.


Author(s):  
Muhammad Wahaj ◽  
Usama Saleem ◽  
Farasat Iqbal ◽  
Muhammad Yasir ◽  
Abdul Wadood ◽  
...  

In this study, silver-strontium doped hydroxyapatite (AgSr-HA)/chitosan composite coatings were deposited on stainless steel (SS) substrate via electrophoretic deposition (EPD) technique. The EPD parameters such as the concentration of Ag Sr-HA particles in the suspension, applied voltage and deposition time were optimized on by the Taguchi Design of Experiment (DoE) approach. DOE approach elucidated that the &ldquo;best&rdquo; coating was obtained at; the deposition voltage of 20V, deposition time of 7 minutes, and at 5 g/L of Ag Sr-HA particles in the suspension. The optimum coatings were characterized by using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. SEM images confirmed the deposition of chitosan/Ag Sr-HA on the SS substrate. The wettability studies indicated the hydrophilic nature of the chitosan/Ag Sr-HA coatings, which confirmed the suitability of the developed coatings for orthopedic applications. The average surface roughness of the chitosan/Ag Sr-HA coatings was in a suitable range for the attachment of bone marrow stromal cells. Chitosan/Ag Sr-HA coatings showed a potent antibacterial effect against the Gram-Positive and Gram-negative bacteria.


2012 ◽  
Vol 472-475 ◽  
pp. 2702-2706 ◽  
Author(s):  
Xian Yan Mao ◽  
Jing Lu ◽  
Hua Guo

Diamond is a promising material especially applied in advanced machining tools, wear-resistant coatings, and the EPD technique should provide a simple method to develop hard coatings for precision machining tools or wear-resistant parts. Therefore, it is useful to research electrophoretic deposition characteristics of diamond powder itself, including the impact of adding ions on direction of EPD especially. In this paper, the effects of suspension concentration and applied voltage, deposition time, and added Ca2+ or Al3+ ions on electrophoretic characteristics of ultra-fine diamond powder were discussed, and electrophoretic deposition (EPD) parameters were optimized by a trial-and-error approach. The results show that smooth, uniform and dense coatings of diamond were obtained under suspension concentration of 1%-1.5% and applied voltage of 30-70 V. The thickness of diamond coating can be controlled by adjusting deposition time under constant voltage and suspension concentration. If deposition direction changed, the appropriate concentration of added Ca2 + and Al3 +, respectively, is in the range of 0.005% to 0.01% and 0.05% to 0.10%.


Author(s):  
Sanja Erakovic ◽  
Djordje Veljovic ◽  
Papa Niokhor Diouf ◽  
Tatjana Stevanovic ◽  
Miodrag Mitric ◽  
...  

In this work, electrophoretic deposition (EPD) was applied to obtain novel hydroxyapatite (HAP)/lignin (Lig) biocomposite coatings on titanium substrate. Nanosized hydroxyapatite powder, prepared by using the modified chemical precipitation method, was used for the fabrication of HAP/Lig composite coatings. EPD was performed at different values of constant voltage and constant deposition time. It was confirmed that control over deposited mass can be achieved by applied voltage and time. The uniform and compact coatings were successfully deposited at applied voltage of 60 V in various deposition times lower than 1 minute. The effect of lignin as natural non-toxic polymer on microstructure, morphology and thermal behavior of biocomposite HAP/Lig coatings was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The electrophoretically deposited HAP/Lig coating has been successfully sintered at lower sintering temperature of 900°C, producing non-fractured coating and indicating that lignin may exhibit adhesive role, strengthening the bonding between HAP particles and substrate surface.


2012 ◽  
Vol 706-709 ◽  
pp. 617-622
Author(s):  
Rong Ma ◽  
Igor Zhitomirsky

Electrophoretic deposition method has been developed for the fabrication of organic-inorganic composite films, containing bioglass and hydroxyapatite in a hyaluronic acid matrix. The film composition and deposition yield were varied by variation of the electrochemical bath composition and deposition time. The films were studied by scanning electron microscopy, thermogravimetric analysis and X-ray diffraction methods. The deposition method offers the advantages of room temperature processing and allows the fabrication of composite films for biomedical applications.


RSC Advances ◽  
2014 ◽  
Vol 4 (59) ◽  
pp. 31230-31238 ◽  
Author(s):  
S. Ranganatha ◽  
T. V. Venkatesha

Zinc–halloysite nanotube (HNT) composite coatings through electrodeposition technique were successfully fabricated on mild steel substrate.


2009 ◽  
Vol 412 ◽  
pp. 183-188
Author(s):  
Mehdi Javidi ◽  
Sirus Javadpour ◽  
Mohammad Ebrahim Bahrololoom ◽  
Jan Ma

Natural hydroxyapatite has been electrophoretically deposited on medical grade 316L stainless steel. Stable suspensions were prepared by mixing 40 g/L milled natural hydroxyapatite powder in isopropyl alcohol and stabilized by polyethylenimine as dispersing agent and binder. The stability of suspensions was investigated by measuring zeta potential. It was found here that the suspension which was stabilized with 4 g/L polyethylenimine revealed a high value of zeta potential and stability. Deposition was achieved on the cathode at constant voltages of 30, 60, and 90 V for 1 to 5 minutes. After deposition, the samples were dried at room temperature for 24 hours and deposition weight, roughness, and thickness of the coatings were measured. The surface morphology of the coated samples was studied by a scanning electron microscope. The results of the electrophoretic deposition process showed that the sample coated at 60 V and 3 minutes led to an adherent, continuous, and crack-free coating. The coating efficiency and thickness increased with increasing deposition time and yielded to saturation at the constant applied voltage. Also, the current density decreased and yielded to saturation at the constant applied voltage during electrophoretic deposition.


2007 ◽  
Vol 330-332 ◽  
pp. 609-612 ◽  
Author(s):  
Xian Wei Meng ◽  
Tae Yub Kwon ◽  
Kyo Han Kim

The objective of the present study was to define the optimal conditions and characterizations of hydroxyapatite (HA) coatings on titanium by electrophoretic deposition (EPD). The EPD processing parameters, such as deposition time, HA concentration level in the suspension, and applied voltage are experimentally determined. A good packing, crack-free and uniform HA coating on titanium was prepared. Then the coatings were sintered at 800 °C for 2 h. The sintered coatings presented a very homogeneous polycrystalline structure free of cracks. The results show that the application of EPD is an effective method in obtaining HA coatings with good properties.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5160
Author(s):  
Nesrine Barbana ◽  
Adel Ben Youssef ◽  
Mohamed Ali Rezgui ◽  
Latifa Bousselmi ◽  
Mohammad Al-Addous

Titanium dioxide thin films immobilized over treated stainless steel were prepared using the pulsed electrophoretic deposition technique. The effects of process parameters (deposition time, applied voltage, initial concentration, and duty cycle) on photocatalytic efficiency and adhesion properties were investigated. To optimize the multiple properties of the thin film, a response surface methodology was combined with a desirability optimization methodology. Additionally, a quadratic model was established based on response surface analysis. The precision of the models was defined based on the analysis of variance (ANOVA), R2, and the normal plot of residuals. Then, a desirability function was used to optimize the multiple responses of the TiO2 thin film. The optimum values of applied voltage, catalyst concentration, duty cycle, and deposition time were 4 V, 16.34 g/L, 90% DC, and 150 s, respectively. Under these conditions, the decolorization efficiency of tested dye solution reached 82.75%. The values of critical charges LC1, LC2, and LC3 were 5.9 N, 12.5 N, and 16.7 N, respectively.


Sign in / Sign up

Export Citation Format

Share Document