Influence of Cutting Parameters on Frictional Coefficient of Micro-Textured Tool

2016 ◽  
Vol 693 ◽  
pp. 807-812
Author(s):  
Hong Yun Chen ◽  
Hai Dong Yang ◽  
Zheng Ye ◽  
Ning Ding

Micro-textured technology which studies in the field of tribology shows that micro-textured surface can effectively improve the situation of friction between the friction interfaces. In this article, micro-textured surface technology has been applied to the cutting tools, in order to study the cutting mechanism of micro-textured carbide tools. The effect of cutting parameters on surface friction characteristics was studied when cutting 45 steel with YT15 cemented carbide tools. The results shown that all surface friction coefficient of the samples got the best value when the feed rate is 0.14mm/r; an appropriate increasing in feed rate can reduce the surface friction coefficient in the low-speed cutting. Throughout the course of the test, the average of the surface friction coefficient of the 4th and the 5th sample tools are better than other tools.

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 854
Author(s):  
Muhammad Aamir ◽  
Khaled Giasin ◽  
Majid Tolouei-Rad ◽  
Israr Ud Din ◽  
Muhammad Imran Hanif ◽  
...  

Drilling is an important machining process in various manufacturing industries. High-quality holes are possible with the proper selection of tools and cutting parameters. This study investigates the effect of spindle speed, feed rate, and drill diameter on the generated thrust force, the formation of chips, post-machining tool condition, and hole quality. The hole surface defects and the top and bottom edge conditions were also investigated using scan electron microscopy. The drilling tests were carried out on AA2024-T3 alloy under a dry drilling environment using 6 and 10 mm uncoated carbide tools. Analysis of Variance was employed to further evaluate the influence of the input parameters on the analysed outputs. The results show that the thrust force was highly influenced by feed rate and drill size. The high spindle speed resulted in higher surface roughness, while the increase in the feed rate produced more burrs around the edges of the holes. Additionally, the burrs formed at the exit side of holes were larger than those formed at the entry side. The high drill size resulted in greater chip thickness and an increased built-up edge on the cutting tools.


2004 ◽  
Vol 449-452 ◽  
pp. 781-784 ◽  
Author(s):  
Hee Dong Kim ◽  
In Soo Kim ◽  
Dong Young Sung ◽  
Min Gu Lee ◽  
S. Dost ◽  
...  

TiN coated films were prepared by a reactive ion physical vapor deposition method. In this research, we studied the relationships between textures and friction coefficient, erosion-corrosion resistance and corrosion resistance in textured TiN films. The surface roughness of (115) textured TiN films is lower than that of (111) textured TiN films. The friction coefficient of (115) textured surface is similar with that of (111) textured surface of TiN coated films. The erosion-corrosion and corrosion resistance of (115) textured surface is better than that of (111) textured surface of TiN coated films.


Author(s):  
Felicia Stan ◽  
Daniel Vlad ◽  
Catalin Fetecau

This paper presents an experimental investigation of the cutting forces response during the orthogonal cutting of polytetrafluoroethylene (PTFE) and PTFE-based composites using the Taguchi method. Cutting experiments were conducted using the L27 orthogonal array and the effects of the cutting parameters (feed rate, cutting speed and rake angle) on the cutting force were analyzed using the S/N ratio response and the analysis of variance (ANOVA). Statistical models that correlate the cutting force with process variables were developed using ANOVA and polynomial regression. The variation of the apparent friction coefficient was analyzed with respect to tool geometry and the cutting process. The results indicated that cutting and thrust forces increase with increasing feed rate, and decrease with increasing rake angles from negative to positive values and increasing cutting speed. A power law relationship between the apparent friction coefficient and the normal force exerted by the chip on the tool-rake face was identified, the former decreasing with an increasing normal force.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 780 ◽  
Author(s):  
Chenchen Li ◽  
Xuefeng Yang ◽  
Shouren Wang ◽  
Yanjun Wang ◽  
Chongyang Lu ◽  
...  

In order to study the influence of texture on the wear and lubrication performance of the surface of the tools, three kinds of textures with unidirectional convergence morphology were processed on the surface of the samples, and each texture was designed with different area occupancy ratios. Simulation analysis shows that, owing to the reflow and convection effect of liquid in the texture, the lubricating film flowing through the textured surface has a high hydrodynamic pressure value, and the semicircular ring texture is the most prominent. By comparing the friction coefficient, when the area occupancy ratio of texture on the surface is 10%, the surface of the samples with different morphology has the lowest coefficient of friction; the friction coefficient of the semicircular ring textured surface is especially very low. Surface textures reduce the direct contact area between the friction pairs, and generate dynamic pressure lubrication and secondary lubrication, so that the surface friction coefficient of the samples is obviously reduced. The surfaces of the non-textured samples have abrasive wear and contact fatigue wear, and the surfaces of the textured samples have adhesive wear, abrasive wear, and cavitation.


2012 ◽  
Vol 500 ◽  
pp. 117-122
Author(s):  
Xiu Li Fu ◽  
Xiao Qin Wang ◽  
Yong Zhi Pan ◽  
Yang Qiao

The wear-resistance performance of machined surface is an important factor in the evaluation of surface quality and precision in aerospace manufacturing industry. By using high-speed Ring-Block friction and wear machine (MRH-3), the influence of cutting parameters in milling aluminum alloy 7050-T7451 on wear-resistance of machined surface including friction coefficient and wear quantity are experimentally investigated. The wear-resistance is particularly sensitive to cutting speed and feed rate. The friction coefficient has marked drop trends as cutting speed increases. The influence of cutting speed on wear quantity is more complicated and the tendency of wear quantity was ascend in first and descend at last (v>900/min). The results show that the influence of cutting parameters on wear-resistance was also positively correlated with surface roughness and work-hardening of machined surface. The high work-hardening and surface quality had the promoting effecting on wear-resistance. The experiment and analysis results show that the machined surface by high speed cutting and lower feed rate has more superior in surface quality and wear-resistance performance comparing with conventional cutting speed.


2012 ◽  
Vol 184-185 ◽  
pp. 33-36
Author(s):  
Hua Qi Liang ◽  
Hui Fang Kong ◽  
Gen Fu Yuan

An object’s fine surface can change the object's surface friction property. So this paper aims to study the friction property of concave laser-textured surface through experiment. First, the Nd:YAG laser is used to generate micro-pores on Cr12 steel surface in the research and then its impact on object's surface friction property is studied. The test result shows that compared with the non-textured surfaces, the concave surface with area density of 5% and depth of I10.8 can reduce the friction coefficient significantly.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 850 ◽  
Author(s):  
Zhaojun Ren ◽  
Shengguan Qu ◽  
Yalong Zhang ◽  
Xiaoqiang Li ◽  
Chao Yang

In this paper, TiAlN-coated cemented carbide tools with chip groove were used to machine titanium alloy Ti-6Al-0.6Cr-0.4Fe-0.4Si-0.01B under dry conditions in order to investigate the machining performance of this cutting tool. Wear mechanisms of TiAlN-coated cemented carbide tools with chip groove were studied and compared to the uncoated cemented carbide tools (K20) with a scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The effects of the cutting parameters (cutting speed, feed rate and depth of cut) on tool life and workpiece surface roughness of TiAlN-coated cemented carbide tools with chip groove were studied with a 3D super-depth-of-field instrument and a surface profile instrument, respectively. The results showed that the TiAlN-coated cemented carbide tools with chip groove were more suitable for machining TC7. The adhesive wear, diffusion wear, crater wear, and stripping occurred during machining, and the large built-up edge formed on the rake face. The optimal cutting parameters of TiAlN-coated cemented carbide tools were acquired. The surface roughness Ra decreased with the increase of the cutting speed, while it increased with the increase of the feed rate.


2015 ◽  
Vol 13 ◽  
pp. 19-22 ◽  
Author(s):  
Gabriel Benga ◽  
Danut Savu ◽  
Adrian Olei

The paper presents the influence of various cutting regimes on the surface roughness, when a hardened bearing steel has been machined using both ceramic and PCBN cutting tools. There were used different cutting conditions varying cutting speed, feed rate and depth of cut in order to determine the influence of each cutting parameter on the surface finish.


2011 ◽  
Vol 314-316 ◽  
pp. 1020-1024
Author(s):  
Yun Hai Jia

High deformation hardening, low thermal conductivity, high built-up edge tendency of austenitic stainless steels were the main factors that make their machinablity difficult. For determination of the suitable cutting parameters in machining austenitic stainless steel by PcBN cutting tools, the samples which were prepared to be used in the experiment, 300 mm in length and 60 mm in diameter, were dry machined in a numerical control lathe. During experiments, dry turning parameters, such as feed rate, cutting speed and cut depth were investigated. The suitable cutting speed and feed rate were determined according to workpieces surface roughness, cutting tools flank wear. Finally, cutting speed of 160 to 200 m/min, feed rate of 0.06 to 0.08 mm/rev and cut depth of 0.10 mm gave the satisfied results.


2011 ◽  
Vol 413 ◽  
pp. 347-350
Author(s):  
Gui Quan Han ◽  
Zeng Zhi Zhang

The cutting temperature rules of cemented carbide tools YW2 during cutting austenitic manganese steel ZGMn13 were investigated by experiments through systematically changing cutting parameters (cutting speed, feed, cutting depth) under the condition of dry cutting. The experiential expressions for cutting temperature of tools were summarized while dominating factors for influencing cutting temperature were analyzed. The results show that accounting values by experiential formulae basically match actually measuring values by experiments which may play an important role in studying cutting law of austenitic manganese steel. Cutting speed plays a major role in determining the temperature of cutting tools, followed by feed rate and depth of cutting.


Sign in / Sign up

Export Citation Format

Share Document