Metal Injection Moulding of Titanium Medical Components

2016 ◽  
Vol 704 ◽  
pp. 155-160 ◽  
Author(s):  
Vera Friederici ◽  
Thomas Hartwig

The metal injection moulding technique is already established for serial production of complex parts, mostly from various stainless steels. However, for other materials, especially for titanium parts there is still the need for superior purity and enhanced surface quality. Facing the challenge of obtaining suitable medical titanium MIM parts, advances have been made at Fraunhofer IFAM over the last few years.One strategy to overcome the high risk of carbon up-take was to adjust the sintering program. Very low Argon flow rates, 50 mbar pressure and two hours dwell time at 1350°C were found to be optimal parameters. A cleaning cycle prior to the actual sintering at 1450°C under hydrogen was also found to enhance the results.Another strategy involved the choice of binder components. Stearic acid, which is often used to improve wettability of binder to powder particle, and high polymer content affect the oxygen content of the titanium parts. Low amounts of both are beneficial for high purity parts.Other investigations were performed concerning the surface quality. It was found that the surface roughness of the mould has an effect on the surface roughness of the sintered parts. Although sintered titanium surfaces as such exhibit quite rough surfaces of about 2-3 µm (Ra value) the influence of the surface finish of the mould was detectable. Using very fine powders of only 15 µm mean particle size and a polished mould a very low surface roughness of less than 1.2 µm on the sintered part was obtainable.

2019 ◽  
Vol 889 ◽  
pp. 155-160
Author(s):  
Trong Mai Nguyen ◽  
Đuc Quy Tran ◽  
Van Nghe Pham ◽  
Van Canh Nguyen

In this research work, the result of the effects of technological parameters on surface roughness in extrusion bars of aluminum alloy were pesented. The results of this study may be used for choosing optimal parameters of extrusion process so that surface quality of extruded bar was improved.


2011 ◽  
Vol 188 ◽  
pp. 43-48
Author(s):  
Luis Norberto López de Lacalle ◽  
Adrián Rodríguez ◽  
Aitzol Lamikiz ◽  
Ainhoa Celaya

In this paper the ball burnishing as a finishing process for sculptured surfaces is studied. This technique is a quick, easy and economical process for a significant improvement of high-end parts. Aiming at the burnishing of complex parts, different strategies are possible. In this case two strategies are presented: continuous burnishing (CB) using 5-axis interpolation and patch burnishing (PB) using 3+2 axis interpolation. Two parts have been previously machined in five-axis and then finished using ball burnishing techniques. The first one is an AISI 1045 hemisphere and the second one is a DIN 1.2379 part (64 HRC). Surface quality has been evaluated for both strategies obtaining a significant improvement of surface roughness and hardness.


Author(s):  
Filippo Simoni ◽  
Andrea Huxol ◽  
Franz-Josef Villmer

AbstractIn the last years, Additive Manufacturing, thanks to its capability of continuous improvements in performance and cost-efficiency, was able to partly replace and redefine well-established manufacturing processes. This research is based on the idea to achieve great cost and operational benefits especially in the field of tool making for injection molding by combining traditional and additive manufacturing in one process chain. Special attention is given to the surface quality in terms of surface roughness and its optimization directly in the Selective Laser Melting process. This article presents the possibility for a remelting process of the SLM parts as a way to optimize the surfaces of the produced parts. The influence of laser remelting on the surface roughness of the parts is analyzed while varying machine parameters like laser power and scan settings. Laser remelting with optimized parameter settings considerably improves the surface quality of SLM parts and is a great starting point for further post-processing techniques, which require a low initial value of surface roughness.


Author(s):  
Gabriele Piscopo ◽  
Alessandro Salmi ◽  
Eleonora Atzeni

AbstractThe production of large components is one of the most powerful applications of laser powder-directed energy deposition (LP-DED) processes. High productivity could be achieved, when focusing on industrial applications, by selecting the proper process parameters. However, it is of crucial importance to understand the strategies that are necessary to increase productivity while maintaining the overall part quality and minimizing the need for post-processing. In this paper, an analysis of the dimensional deviations, surface roughness and subsurface residual stresses of samples produced by LP-DED is described as a function of the applied energy input. The aim of this work is to analyze the effects of high-productivity process parameters on the surface quality and the mechanical characteristics of the samples. The obtained results show that the analyzed process parameters affect the dimensional deviations and the residual stresses, but have a very little influence on surface roughness, which is instead dominated by the presence of unmelted particles.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 75
Author(s):  
Nikolaos E. Karkalos ◽  
Panagiotis Karmiris-Obratański ◽  
Szymon Kurpiel ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Surface quality has always been an important goal in the manufacturing industry, as it is not only related to the achievement of appropriate geometrical tolerances but also plays an important role in the tribological behavior of the surface as well as its resistance to fatigue and corrosion. Usually, in order to achieve sufficiently high surface quality, process parameters, such as cutting speed and feed, are regulated or special types of cutting tools are used. In the present work, an alternative strategy for slot milling is adopted, namely, trochoidal milling, which employs a more complex trajectory for the cutting tool. Two series of experiments were initially conducted with traditional and trochoidal milling under various feed and cutting speed values in order to evaluate the capabilities of trochoidal milling. The findings showed a clear difference between the two milling strategies, and it was shown that the trochoidal milling strategy is able to provide superior surface quality when the appropriate process parameters are also chosen. Finally, the effect of the depth of cut, coolant and trochoidal stepover on surface roughness during trochoidal milling was also investigated, and it was found that lower depths of cut, the use of coolant and low values of trochoidal stepover can lead to a considerable decrease in surface roughness.


2014 ◽  
Vol 660 ◽  
pp. 38-42 ◽  
Author(s):  
Azriszul Mohd Amin ◽  
Mohd Halim Irwan Ibrahim ◽  
Rosli Asmawi ◽  
Najwa Mustapha

Influence of sewage ratio or Fat Oil Grease (FOG) on the feedstock rheological characteristic for optimal binder formulation in metal injection moulding is evaluated besides Polypropylene (PP) as a backbone binder. Powder loading of 62% of water atomised SS316L being used here to determine the possibility of the best binder formulation which could be optimised for optimal powder loading base on rheological characteristic analysis. Two binder formulations of PP to SF being selected here are 60/40, 50/50 and 40/60 accordingly with the powder loading of 62% each binder formulation. The analysis will be base on viscosity, shear rate, temperature, activation energy, flow behaviour index and moldability index. It is found that from rheological result views, binder with composition of 60/40 and 50/50 exhibit pseudoplastic behaviour or shear thinning where the viscosity decrease with increasing shear rate. For 40/60 binder ratio is not suitable since the behaviour of the flow indicates dilatants behaviour. After considering all the criteria in terms of flow behaviour index, activation energy, viscosity and mouldability index, binder with ratio of 60/40 is evolve as a good selections.


2009 ◽  
Vol 69-70 ◽  
pp. 253-257
Author(s):  
Ping Zhao ◽  
Jia Jie Chen ◽  
Fan Yang ◽  
K.F. Tang ◽  
Ju Long Yuan ◽  
...  

Semi-fixed abrasive is a novel abrasive. It has a ‘trap’ effect on the hard large grains that can prevent defect effectively on the surface of the workpiece which is caused by large grains. In this paper, some relevant experiments towards silicon wafers are carried out under the different processing parameters on the semi-fixed abrasive plates, and 180# SiC is used as large grains. The processed workpieces’ surface roughness Rv are measured. The experimental results show that the surface quality of wafer will be worse because of higher load and faster rotating velocity. And it can make a conclusion that the higher proportion of bond of the plate, the weaker of the ‘trap’ effect it has. Furthermore the wet environment is better than dry for the wafer surface in machining. The practice shows that the ‘trap’ effect is failure when the workpiece is machined by abrasive plate which is 4.5wt% proportion of bond in dry lapping.


2012 ◽  
Vol 70 ◽  
pp. 142-145 ◽  
Author(s):  
Muhammad Hussain Ismail ◽  
Russell Goodall ◽  
Hywel A. Davies ◽  
Iain Todd

Sign in / Sign up

Export Citation Format

Share Document