Effect of Second Loading on the Instrumented Continuous Flight Auger Concrete Pile on Porous Soil

2017 ◽  
Vol 753 ◽  
pp. 285-289
Author(s):  
Paulo Jose Rocha Albuquerque ◽  
David de Carvalho

This paper presents the results of two load tests carried out in a continuous flight auger pile of 0.4 m in diameter and 12 m in length. The pile was instrumented in depth with strain gages in order to obtain the load capacity along the shaft and the tip. The load tests were carried out at the University of Campinas Experimental Site Test. The subsoil where the pile was installed is constituted by a first stratum of Silty Clay, which is porous and collapsible, of 6.5 m in thickness, followed by a stratum of residual soil of Clayey Silt up to 14 m depth. The first load test was the slow type, and a quick load test in the same pile after five days. From the results obtained with the use of instrumentation, the values for both lateral and tip load were determined in each one of test carried out in the pile studied. With these results and applying the Cambefort’s Law, it was could evaluate the evolution of the shaft friction and tip load in relation to the associated settlements, as well as the occurrence of residual load. The ultimate load obtained in the test was 960 kN and 810 kN for the first and second tests, respectively. The stress for the tip was 853 kPa and 655 kPa for the first and second tests, respectively.

2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Pedro Lucas Prununciati ◽  
Jean Rodrigo Garcia ◽  
Tiago Garcia Rodriguez

RESUMO:  O recalque em fundações profundas e sua influência numa edificação tem se mostrado um parâmetro crítico, já que em diversos projetos a capacidade de carga não é o fator limitante, mas sim o recalque que a estrutura pode suportar em seu estado limite de serviço (ELS). Neste trabalho, são analisados resultados de deslocamento para uma estaca, estimados a partir dos métodos de Poulos e Davis (1980), Vésic (1969, 1975a) e Cintra e Aoki (2010), comparando-os com o valor recalque obtido por ensaios de prova de carga. Para tal, se apresentam três ensaios com carregamento do tipo lento, seguindo instruções da NBR12131 (ABNT, 2006), executados em estacas hélice contínua instrumentadas, com comprimentos de 14,75 m, 12,85 m e 21,80 m e diâmetros de 70 cm, 60 cm e 70 cm, respectivamente. Essas estacas foram ensaiadas no munícipio de Itatiba, em uma região onde sondagens à percussão demonstram a predominância de areia e silte. Para as estacas analisadas, o método proposto por Cintra e Aoki (2010) mostrou melhor resultado para a estimativa do recalque, quando comparado aos resultados de recalque obtidos em prova de carga. O método Poulos e Davis (1980) obteve desempenho menos satisfatório, resultando uma margem de erro de 16%, para mais ou para menos. O método de Vésic (1969, 1975a) se mostrou conservador e, nos casos analisados, resultou uma superestimativa de 138%, quando comparados aos valores de prova de carga.ABSTRACT: The settlement in deep foundations and its influence appears to be a critical parameter, as in many projects, the load capacity of a pile is not the limiting factor, but the settlement which the structure can suffer on its serviceability limit state (SLS) is. In this research, the settlement results of a pile, estimated by the methods of Poulos e Davis (1980), Vésic (1969, 1975a) and Cintra e Aoki (2010) will be analyzed, to be compared with the value of settlement obtained from load tests. Three slow type load tests, following the instructions of NBR12131 (ABNT, 2006) are presented, carried out in instrumented continuous flight augers, with lengths of 14,75 m, 12,85 m and 21,80 m and diameters of 70 cm, 60 cm and 70 cm, respectively. Those piles were tested in the city of Itatiba, in a region where standard penetration tests evidenced the predominance of sand and silt. In the analyzed piles, the Cintra e Aoki (2010) method has shown the best result for a settlement estimate, when compared with the value obtained by a load test. The Poulos e Davis method (1980) obtained a less satisfactory performance, resulting a margin of sampling error of plus or minus 16%. The Vésic method (1969, 1975a) has shown to be conservative, resulting, in the analyzed cases, an overestimate of 138%, when compared with the load tests values.


Squeezed Branch Pile is derived on the basis of caste in place concrete pile. It has one or more branches along the pile shaft at design depth. Squeezed branch piles are often used in high rise building, transmission tower and in other pile foundations where anticipated uplift or vertical load may cause failure. This pile is one of the excellent options of pile foundation for soft soil and silty soil. The behaviour of Squeezed Branch pile is difficult to explain using simple pile-soil theories or two dimensional numerical analyses because of complicated geometry of pile.In the present numerical analysis, a 3D pile-soil model of conventional circular pile and squeezed branch pile foundations are analysed using MIDAS GTS NX finite element software to find out effectiveness of squeezed branch pile over conventional pile. The aim is to study the performance of Squeezed Branch Pile foundation in silty clay with respect to various parameters such as types of loading, branch diameter, branch spacing and number of branches. Analysis shows that the squeezed branch pile has higher vertical, lateral and uplift load capacity as compared to conventional pile.


Author(s):  
Zygmunt Meyer ◽  
Kamil Stachecki

Abstract In the work authors analysed possibility of obtaining static load tests curve for a pile in case of changed diameter, using load curve based on results of static load tests for given diameter. In calculation analysis authors used Meyer–Kowalów (M-K) method. A mathematical description was shown of determining new M-K curve for a pile with changed diameter, taking as a basis original M-K curve obtained from static load tests. Then an example of calculations is presented in which parameters of M-K model for a new curve were determined. Simulation calculations were carried out in the original computer program, the results of which includes load curves for piles with different diameters and relations between diameter changes, limit load capacity and settlement of a pile.


2016 ◽  
Vol 53 (1) ◽  
pp. 103-117 ◽  
Author(s):  
Cristina de Hollanda Cavalcanti Tsuha ◽  
João Manoel Sampaio Mathias dos Santos Filho ◽  
Thiago da Costa Santos

The use of helical piles as tower foundations in Brazil has increased considerably during the last 5 years. A number of these piles are installed in unsaturated structured soils that cover a significant part of the Brazilian territory. However, the installation of helical piles in such soils produces a breakdown of the natural soil structure, which affects the pile performance for tension applications. This scenario motivates the present work, in which a comprehensive pile load-test program was carried out on helical piles composed of a single helix or multi-helices, installed in an unsaturated tropical residual soil. Eleven full-scale pile axial load tests were carried out, including two compression and nine tension tests. In addition, cone penetration tests were performed close to the piles after installation, and undisturbed soil samples were collected at the depth of the helices. The aim of these additional tests was to contribute to the understanding of the effect of helical pile installation on soil structure. The results of the tension load tests showed that the changes in the structure of the porous tested soil result in particularly low pile uplift capacities. In contrast, the load–settlement curves of the pile compression tests indicate a peculiar failure mechanism due to the sensitive soil structure associated with the high void ratio of the intact soil beneath the bottom plate.


DYNA ◽  
2021 ◽  
Vol 88 (217) ◽  
pp. 169-177
Author(s):  
Tiago de Jesus Souza ◽  
André Querelli ◽  
Felipe Vianna Amaral de Souza Cruz ◽  
Pablo Cesar Trejo Noreña

The dynamic load test is currently an important and usual tool for design, control, and quality assurance of deep foundations. The objective of this paper is to compare the expected geotechnical load capacity through empirical and semi-empirical Brazilian methods with the ultimate pile load obtained from the interpretation of Dynamic Load Tests (DLT; PDA). The stress-settlement curve was constructed from CAPWAP analysis with blows of different drop heights of increasing energy – test procedure proposed by Aoki (1989). Continuous flight augering (CFA) Franki and Root piles were evaluated in this study. These piles were tested in different cities in Brazil. Additionally, DLT results were compared with static load tests, and a good correlation was found with these field tests. The article aims to provide comparative background to guide foundation designers, as well as those who routinely develop these projects in Brazil.


2014 ◽  
Vol 1030-1032 ◽  
pp. 732-735
Author(s):  
Paulo J.R. Albuquerque ◽  
Osvaldo de Freitas Neto ◽  
Jean R. Garcia

Results obtained from in-situ load tests carried out on omega displacement piles sunk in a porous, lateritic and unsaturated soil deposit, are analyzed in this paper. Three slow-maintained load tests were performed on deep instrumented piles with a diameter of 0.37 m and around 12 m long. The soil deposit consists of a superficial, silty clay “porous” layer 6 m thick. Under this layer there is a lateritic stratum 10 m thick, geotechnically consisting of a residual clayey silt. The results of the field load tests yielded a maximum pile load (average for the tests) of 1428 kN, which is twice as high as corresponding experimental values from standard bored piles with similar geometric conditions. Numerical finite element analyses, were performed in order to back-analyze the geotechnical soil parameters for a post-execution pile condition. The results permitted a better understanding of the improvement of the subsoil given the intrinsic execution characteristics of this particular pile. It was also possible to note that omega displacement piles have great potential to become an economically viable solution in tropical soils, given the enhanced behavior of such piles when compared to alternative techniques.


2017 ◽  
Vol 13 (2) ◽  
Author(s):  
Rodrigo Cerqueira Rogerio

RESUMO: Apresenta-se neste trabalho a solução adotada para execução das fundações do Parque de Usina Eólica localizado no Ceará, com a utilização das estacas injetadas autoperfurantes, executadas em presença de solos arenosos. No qual consiste em perfurar o solo com altíssima velocidade por rotação e “pull down”, através da injeção simultânea de nata de cimento com medias pressões. Ocasionando na estaca um diâmetro final que pode obter o dobro do bit de perfuração, de acordo com o tipo de solo, gerado pelo efeito do jato da nata de cimento. Detalhando os processos executivos, verificando os aspectos técnicos e operacionais, para melhor compreender as características estruturais deste elemento. De forma a verificar “in situ” o desempenho deste novo tipo de fundação profunda, foram realizadas provas de carga, em estacas com diferentes diâmetros e comprimentos, realizadas em perfis estratigráficos de solos arenosos, para melhor avaliação de sua capacidade de carga. Analisando-se os ensaios das provas de carga interpretados a base da extrapolação da curva carga versus recalque e das previsões da capacidade de carga, obtidas por meio dos métodos semi-empíricos de correlação com ensaios de penetração (SPT), avaliando os padrões de execução desta tipologia de estaca injetada para comunidade geotécnica. ABSTRACT: This paper aims to establish the selected solution to except the foundations of the Wind Energy Park in Ceará (Brazil), with an executive methodology of the self-drilling injection piles framed in loco in Sandy soil. In which the soil drilling is done with the highest speed by rotation and pull down, through the simultaneous injection of grouting with medium pressures. This kind of drilling causes in the pile a final diameter that can get the double bore bit, according to the type of soil, done by the grouting blast. The executive processes are detailed as a whole, and also presenting the pile materials composition, in order to understand the structural characteristics of this element. To verify the performance of this new kind of deep drilling, instrumentations were done: settlement control and load tests in constructions with different structural characteristics, in self-drilling injected piles with different diameters and length, done in stratigraphical sandy, for a better evaluation of its load capacity. Analyzing the essays of load tests interpreted in the basis of curve extrapolation load versus settlement and the previsions of the load capacity, obtained by semi-empirical methods correlating with the penetrations methods (SPT), offering information to the geotechnical community.


2021 ◽  
Vol 44 (2) ◽  
pp. 1-6
Author(s):  
Silvio Heleno de Abreu Vieira ◽  
Francisco R. Lopes

Dynamic formulae are a widely used expedient for the control of driven piles to ensure load capacity. These formulae have considerable limitations when used in the prediction of the load capacity on their own, but are very useful in the control of a piling when combined with other tests. This technical note presents an evaluation of the Danish Formula for 54 precast concrete piles, comparing its results with High Strain Dynamic Tests (HSDTs), Static Load Tests (SLTs) and predictions by a semi-empirical static method (Aoki & Velloso, 1975). The data used in the comparison come from three works in the city of Rio de Janeiro, Brazil. All piles were driven with free-fall hammers and in one particular work the piles were relatively short. The predictions of the Danish Formula were evaluated in relation to the pile length/diameter ratio. It was concluded that for short piles - with lengths less than 30 times the diameter - this formula indicates bearing capacities higher than the actual ones. A correction for a safe use of the Danish Formula for short piles is suggested.


2004 ◽  
Vol 31 (1) ◽  
pp. 133-145 ◽  
Author(s):  
Aftab A Mufti ◽  
Baidar Bakht ◽  
Dagmar Svecova ◽  
Vidyadhar Limaye

Grout laminated wood decks (GLWDs), representing the third generation of stressed wood decks, comprise either laminates or logs trimmed to obtain two parallel faces. The logs or laminates, running along the span, are held together by means of transverse internal grout cylinders that may be in either compression or tension. Two full-scale models of GLWD were constructed at Dalhousie University, Halifax, one with grout cylinders in compression and the other with the cylinders in tension. Service load tests conducted in Halifax showed that the former deck had better load distribution characteristics. Two years after the tests in Halifax, the models were shipped to The University of Manitoba in Winnipeg, where they were tested to failure under a central patch load. Because of miscommunication with the supplier, the logs of the GLWD with grout cylinders in compression were also trimmed to the third face that was kept at the bottom of the deck. The failure tests showed that despite its superior load distribution characteristics, the deck with grout cylinders in compression failed at a significantly lower load than the GLWD with cylinders in tension. It is argued that a planar surface in the logs at the flexural tension face not only reduces their flexural stiffness but also brings the defects of wood to the surface with maximum stress. The deck with the flat bottom surface underwent tension failure of the most heavily loaded logs, whereas the deck with the intact round surface of the logs at both top and bottom failed by horizontal splitting of all the logs.Key words: articulated plate, bridge deck, grout laminated deck, orthotropic plate, timber.


2011 ◽  
Vol 243-249 ◽  
pp. 4402-4407
Author(s):  
Yong Hong Miao ◽  
Guo Jun Cai ◽  
Song Yu Liu

Six methods to determine axial pile capacity directly based on piezocone penetration test (CPTU) data are presented and evaluated. Analyses and evaluation were conducted on three types piles that were failed during pile load testing. The CPT methods, as well as the CPTU methods, were used to estimate the load carrying capacities of the investigated piles (Qp ). Pile load test were used to determine the measured load carrying capacities (Qm). The pile capacities determined using the different methods were compared with the measured pile capacities obtained from the pile load tests. Two criteria were selected as bases of evaluation: the best fit line for Qp versus Qm and the arithmetic mean and standard deviation for the ratio Qp /Qm. Results of the analyses showed that the best methods for determining pile capacity are the CPTU methods.


Sign in / Sign up

Export Citation Format

Share Document