Preparation of Activated Carbon-Based Catalyst from Candlenut Shell Impregnated with KOH for Biodiesel Production

2018 ◽  
Vol 777 ◽  
pp. 262-267 ◽  
Author(s):  
Taslim ◽  
Octa Bani ◽  
Iriany ◽  
Novi Aryani ◽  
Gapenda Sari Kaban

Candlenut shell is an agricultural waste which can be processed into low-cost active carbon. Activated carbon cannot be used directly as a heterogeneous catalyst in transesterification of biodiesel because of its low alkalinity, thus treatment is required. In this study, the carbonization of candlenut shells was conducted at 500°C for 4 h. The activated carbon obtained was modified by impregnation with potassium hydroxide (KOH) solution. KOH concentration used was 50g/150 ml aqua des and impregnation time was 24 h. The impregnated activated carbon was characterized by Scanning Electron Microscopy - energy dispersive spectroscopy (SEM-EDS), Fourier Transform Infrared (FTIR) spectroscopy, and was further tested as a heterogeneous catalyst for biodiesel production.

Author(s):  
Vivudh Gupta ◽  
Balbir Singh ◽  
RK Mishra

This paper investigates microstructural and mechanical characteristics of novel AA7075 composites supplemented with agricultural waste, i.e. rice husk ash and poultry waste, i.e. carbonized eggshells. Both these wastes possess important constituents which make them potential reinforcement material for composites, and their utilization also reduces the problem of disposal to a certain extent. AA7075 composites with varying weight percentages of rice husk ash and carbonized eggshells were prepared through stir casting route. The sum of weight percentages of both reinforcements was kept constant at 5 wt.%. Composites were tested for density and different mechanical properties. Prior to these tests, composites were examined through scanning electron microscopy and energy-dispersive X-ray spectroscopy techniques, wherein uniform distribution of reinforcements was observed. Inclusion of light weight reinforcements decreased the density of composites. Among these composites, highest hardness value was shown by composite having 5 wt.% of rice husk ash with 24.47% enhancement over unreinforced AA7075. Maximum tensile strength and compression strength were exhibited by hybrid composite with 3.75 wt.% rice husk ash and 1.25 wt.% carbonized eggshells. This increment is 28.20% and 16%, respectively, over base composition. Impact strength decreased as the weight percentage of CES increased, thereby indicating brittleness in behaviour. Fractography analysis of tensile and impact test specimens was done through scanning electron microscopy to determine failure mode wherein presence of cracks, voids, dimples, debonding, etc. was observed. Hence, these light weight and low cost green AA7075 composites showed improved properties making them as an alternative as well as sustainable material for automotive and aerospace applications.


2015 ◽  
Vol 35 (01) ◽  
pp. 69 ◽  
Author(s):  
Zuhra Zuhra ◽  
Husni Husin ◽  
Fikri Hasfita ◽  
Wahyu Rinaldi

Biodiesel, as a potential substituted energy, has attracted a great attention in recent years, which can be produced from o3 renewable sources and provides complete combustion with less gaseous pollutant emission. Biodiesel is produced conventionally via transesterification of vegetable oils using homogeneous catalysts, e.g. KOH, NaOH, and HaSO4. The homogeneous catalytic process, however, provides some disadvantages, such as, a huge production of wastewater from washing process of catalyst residues and non-reusability of the catalysts. In order to circumvent most of the economical and environmental drawbacks of homogeneous process, heterogeneous catalysts, this can be easily separated from reaction mixture by filtration. These catalysts are less corrosive and more environment-friendly. The objective of this work was to develop the effectivity of using waste of cockle (Clinocardium nuttalli) shell as a heterogeneous base catalyst for the biodiesel production. The catalysts were prepared by simple calcination methods, at temperaturesof 600, 700, 900 oC, and without calcination. Calcined catalysts were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) technique. Transesterification process of Calophyllum inophyllum L.oil and o methanol were carried out under bath reactor over the cockle shellcatalysts to produce biodiesel. The XRD patterns depicted that CaCO3 was successfully converted into CaO. SEM recorded demonstrates that the particle catalyst become smaller after heating. The highest activity was found at calcined catalyst of 900 oC, with the yield of biodiesel reaching 87.4% during 3 hours. The solid catalyst from waste cockle shell was proven to be durable for the transesterification of edible oil.Keywords: Cockle shell, biodiesel, heterogeneouscatalyst, Calophyllum inophyllum L. oil, transesterification ABSTRAKBiodiesel, sebagai sumber energi potensial telah menarik perhatian dalam beberapa tahun terakhir, karena dapat diproduksi dari sumber terbaharukan dan menghasilkan polutan yang rendah. Secara konvensional, biodiesel diproduksi melalui transesterifikasi minyak nabati menggunakan katalis homogen, yaitu: KOH, NaOH, dan H2SO4. Proses katalitik homogen memiliki beberapa kekurangan, seperti: banyak mengeluarkan air buangan dari pencucian residu katalis dan tidak dapat digunakan kembali. Untuk mengatasi kekurangan penggunaan katalis homogen baik secara ekonomi maupun lingkungan ditempuh dengan mengembangkan katalis heterogen atau katalis padat, yang dapat dengan mudah dipisahkan dari campuran reaksi secara filtrasi. Katalis ini juga rendah korosi dan lebih ramah lingkungan. Tujuan dari penelitian ini adalah untuk mengetahui efektivitas penggunaan abu kulit kerang yang mengandung CaO (kalsium oksida) sebagai katalis heterogen terhadap rendemen biodiesel. Bahan baku untuk pembuatan biodiesel adalah minyak nyamplung. Katalis disiapkan dengan metode kalsinasi sederhana pada temperatur: 600, 700, 900 oC, dan tanpa kalsinasi. Setelah kalsinasi, katalis dikarakterisasi denganmetode X-ray Diffraction (XRD) dan Scanning Electron Microscopy (SEM). Reaksi transesterifikasi minyak nyamplung dengan metanol dilangsungkan di dalam reaktor berpengadukmenggunakan katalis padat dari kulit kerang. Dari pola XRD mengindikasikan bahwa CaCO3 terkonversi dari kulit kerang sempurna menjadi CaO ketika kulit kerang dikalsinasi pada suhu 900 oC. Hasil rekaman SEM diperoleh ukuran partikel katalis setelah dipijar menjadi kecil. Aktivitas katalis tertinggi diperoleh pada penggunaan abu kulit kerang yang dikalsinasi pada suhu 900 oC. Rendemenmetil ester tertinggi mencapai 87,4% setelah 3 jam reaksi. Katalis abu kulit kerang telah terbukti dapat digunakan untuk reaksi transesterifikasi minyak nabati menjadi biodiesel.Kata kunci: Kulit kerang, biodiesel, katalis heterogen, kalsium oksida, minyak nyamplung, transesterikasi


2003 ◽  
Vol 10 (2) ◽  
pp. 285-287 ◽  
Author(s):  
DáŠa Slížová ◽  
Otakar Krs ◽  
Blanka PospíŠilová

Purpose: To report the use of hexamethyldisilazane (HMDS) as an alternative to critical point drying for preparing stented canine peripheral vessels for scanning electron microscopy (SEM). Technique: Vascular specimens were fixed in 4% formaldehyde overnight, dehydrated in a graded ethanol series, followed by immersion in 100% hexamethyldisilazane. After air drying, the specimens were mounted on stainless steel stubs, coated with gold, and examined in the SEM. The electron micrographs were of high quality, showing the layers of the vascular wall and the incorporated stent covered by a neointimal layer. The micrographs were comparable to corresponding histological sections, but detailed endothelial patterns were more visible. Conclusions: HMDS treatment and subsequent air drying provides good quality scanning electron micrographs that reveal both endothelial patterns and the layered architecture of stented vessels. The disadvantage of HMDS drying may be a shrinkage and distortion similar to other drying agents. Ease of handling, low cost, and a high rate of success are advantages that favor HMDS desiccation over other drying methods.


BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 8641-8652
Author(s):  
Jing Geng ◽  
Lu-Fei Li ◽  
Wen-Liang Wang ◽  
Jian-Min Chang ◽  
Chang-Lei Xia ◽  
...  

Characteristics of the char produced in the co-pyrolysis of used rubber and larch sawdust were studied in the conversion of low-valued pyrolysis char into value-added activated carbon using two-step co-pyrolysis, namely pyrolysis and activation processes. The physicochemical characteristics of the chars were examined by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), and scanning electron microscopy (SEM). The results revealed that after the two-step co-pyrolysis, the upgraded carbon had BET surface areas ranging from 600 m2 g−1 to 900 m2 g−1, which were higher than the requirements for activated carbon (American Water Works Association B600 standard). Additionally, as the sawdust/rubber ratio increased, the BET value increased accordingly. A possible reaction mechanism is proposed based on the experimental results during the activation process.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 827
Author(s):  
Syeda Samia Nayab ◽  
M. Asad Abbas ◽  
Shehla Mushtaq ◽  
Bilal Khan Niazi ◽  
Mehwish Batool ◽  
...  

A rapid increase in population worldwide is giving rise to the severe problem of safe drinking water availability, necessitating the search for solutions that are effective and economical. For this purpose, membrane technology has shown a lot of promise but faces the challenge of fouling, leading to a reduction in its lifetime. In this study, ultrafiltration polyethersulfone membranes were synthesized in two different concentrations, 16% wt. and 20% wt., using the phase inversion method. Chitosan and activated carbon were incorporated as individual fillers and then as composites in both the concentrations. A novel thiolated chitosan/activated carbon composite was introduced into a polyethersulfone membrane matrix. The membranes were then analyzed using Attenuated Total Reflection–Fourier-Transform Infrared spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), optical profilometry, gravimetric analysis, water retention, mechanical testing and contact angle. For membranes with the novel thiolated chitosan/activated carbon composite, Scanning Electron Microscopy micrographs showed better channels, indicating a better permeability possibility, reiterated by the flux rate results. The flux rate and bovine serum albumin flux were also assessed, and the results showed an increase from 105 L/m2h to 114 L/m2h for water flux and the antifouling determined by bovine serum albumin flux increased from 23 L/m2h to 51 L/m2h. The increase in values of water uptake from 22.84% to 76.5% and decrease in contact angle from 64.5 to 55.7 showed a significant increase in the hydrophilic character of the membrane.


Author(s):  
Simeon C. Daeschler ◽  
Niclas Manson ◽  
Kariym Joachim ◽  
Alex W. H. Chin ◽  
Katelyn Chan ◽  
...  

AbstractBackgroundThe unprecedented demand and consequent global shortage of N95 respirators during the COVID-19 pandemic have left frontline workers vulnerable to infection. To potentially expand the supply, we validated a rapidly applicable low-cost decontamination protocol in compliance with regulatory standards to enable the safe reuse of personalized, disposable N95-respirators.MethodsFour common models of N95-respirators were disinfected for 60 minutes at 70°C either at 0% or 50% relative humidity (RH). Effective inactivation of SARS-CoV-2 and E. coli was evaluated in inoculated masks. The N95 filter integrity was examined with scanning electron microscopy. The protective function of disinfected N95 respirators was tested against US NIOSH standards for particle filtration efficiency, breathing resistance and respirator fit.ResultsA single heat treatment inactivated both SARS-CoV-2 (undetectable, detection limit: 100 TCID50/ml) and E. coli (0 colonies at 50%RH) in all four respirator models. Even N95-respirators that underwent ten decontamination cycles maintained their integrity and met US-governmental criteria for approval regarding fit, filtration efficiency and breathing resistance. Scanning electron microscopy demonstrated maintained N95 fiber diameter compared to baseline.InterpretationThermal disinfection enables large-scale, low cost decontamination of existing N95 respirators using commonly sourced equipment during the COVID-19 pandemic. This process could be used in hospitals and long term care facilities and also provides a feasible approach to expand the N95 supply in low- and middle-income regions.


2012 ◽  
Vol 466-467 ◽  
pp. 458-462
Author(s):  
Ying Jie Zhang ◽  
Shu Fen Xu ◽  
Xia Liao ◽  
Rong Yang ◽  
Da Peng Li

A new heterogeneous Fenton-like catalyst of Fe/S/GAC was prepared by granular activated carbon (GAC) soaked in solution of (NH4)2S2O8 and Fe(NO3)3. The effect of the concentration of (NH4)2S2O8 , Fe(NO3)3, drying temperature and different catalysts on the catalytic reactivity of catalyst was discussed. The removal rate of Orange IV was used to express the catalytic reactivity of the catalyst. The prepared catalysts were characterized by X-ray diffraction (XRD), specific surface area (BET) and scanning electron microscopy (SEM). The removal rate of Orange IV followed second-order kinetics. The catalyst of Fe/S/GAC has higher catalytic activity than that of Fe/GAC.


Sign in / Sign up

Export Citation Format

Share Document