Effect of Different Factors on Measured Values of Indentation Hardness of Interstitial Free Steel by Depth Sensing Indentation

2018 ◽  
Vol 784 ◽  
pp. 49-54
Author(s):  
Peter Burik ◽  
Ladislav Pešek ◽  
Zuzana Andršová ◽  
Pavel Kejzlar

Nanomechanical testing using depth sensing indentation (DSI) provides a straightforward solution for quantitatively characterizing each of phases in microstructure because it is very powerful technique for characterization of materials in small volumes. Measuring the local properties (indentation hardness HIT, indentation modulus EIT, indentation energy: total Wtotal, elastic Welast, plastic Wplast) of each microstructure component separately in multiphase materials gives information that is valuable for the development of new materials and for modelling. The mechanical properties of materials measured by DSI are affected by the experimental procedure, by the measurement conditions and factors which result from the material characteristics and device construction. We have to determine the effect of individual factors on the measurement in order to reach the repeatability and to allow the comparing the mechanical properties of the material. The aim of this investigation is to determine the measurement factors that affect indentation hardness of individual microstructural components and global mechanical properties of thin steel sheets. We investigated the factors which result from the material characteristics (crystallographic orientation of grain, grain boundary and anisotropy), preparation of the sample surface (roughness of sample surface) and method of measurement (pile-up, ISE).

2017 ◽  
Vol 891 ◽  
pp. 73-77
Author(s):  
Peter Burik ◽  
Ladislav Pešek ◽  
Zuzana Andršová ◽  
Pavel Kejzlar

Nanomechanical testing using depth sensing indentation (DSI) provides a straightforward solution for characterizing of mechanical properties (indentation hardness HIT, Young’s modulus EIT, indentation energy: total Wtotal, elastic Welast, plastic Wplast) of homogeneous (bulk) materials. However, real materials such as multi-phase steels are a heterogeneous material on the microscopic scale (microstructure). We need to know the local mechanical properties of each phase separately in those materials for reasons development of new materials and for modeling. Mechanical properties of each phase separately in multiphase materials are difficult or even impossible to examine in bulk material ex situ.In this paper we describe the technique for measuring the mechanical properties of each phase separately in multiphase steel by two-dimensional mapping tool. This approach relies on large arrays of nanoindentations (known as grid indentation) and statistical analysis of the resulting data [1, 2]. The aim of this investigation is to optimize the parameters of the grid indentation for a given microstructure of steel sheets.


2014 ◽  
Vol 635 ◽  
pp. 216-220
Author(s):  
Peter Burik ◽  
Ladislav Pešek

The macroscopic mechanical properties of steel are highly dependent upon microstructure, morphology, and distribution of each phase present. Nanomechanical testing (Depth sensing indentation) provides a straightforward solution for quantitatively characterizing each of these phases because it is very powerful technique for characterization of materials in small volumes. Measuring the intrinsic properties of each phase separately in multiphase materials gives information that is valuable for the development of new materials and for modelling [1]. In this work, depth sensing indentation has been used to reveal mechanical properties of different phases in steel sheets.


2016 ◽  
Vol 368 ◽  
pp. 45-48
Author(s):  
Peter Burik ◽  
Ladislav Pešek ◽  
Zuzana Andršová ◽  
Pavel Kejzlar ◽  
Pavol Zubko

The macroscopic mechanical properties of steel are highly dependent upon microstructure, crystallographic orientation of grains and distribution of each phase present, etc. Nanomechanical testing using depth sensing indentation (DSI) provides a straightforward solution for quantitatively characterizing each of phases in microstructure because it is very powerful technique for characterization of materials in small volumes. Measuring the local properties of each microstructure component separately in multiphase materials gives information that is valuable for the development of new materials and for modelling. The work experimentally analyses the effect of strain history on the mechanical properties of individual components in steel sheets by depth sensing indentation. The measurements were carried out on broken tensile specimens.


2016 ◽  
Vol 699 ◽  
pp. 43-48
Author(s):  
Martin Ovsik ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Vojtech Senkerik

The process of radiation crosslinking helps to improve some mechanical properties of polymer materials. Micro-mechanical changes in the surface layer of glass-fiber filled PA 66 modified by beta radiation were measured by the Depth Sensing Indentation - DSI method on samples which were non-irradiated and irradiated by different doses of the β - radiation. The specimens were prepared by injection technology and subjected to radiation doses of 0, 33, 66 nad 99 kGy. The change of micro-mechanical properties is greatly manifested mainly in the surface layer of the modified polypropylene where a significant growth of micro-hardness values can be observed. Indentation modulus increased from 1.8 to 3.0 GPa (increasing about 66%) and indentation hardness increased from 87 to 157 MPa (increasing about 80%). This research paper studies the influence of the dose of irradiation on the micro-mechanical properties of semi-crystalline polyamide 66 filled by 30% glass fiber at room temperature. The study is carried out due to the ever-growing employment of this type of polymer.


2015 ◽  
Vol 752-753 ◽  
pp. 322-325
Author(s):  
Martin Ovsik ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Martin Reznicek ◽  
...  

In this paper, the effect of the electron beam irradiation on the indentation hardness, indentation modulus and indentation creep have been studied by means of the Depth sensing indentation (DSI). Cross-linking is a process in which polymer chains are associated through chemical bonds. Radiation doses of 33, 66 and 99 kGy were used for unfilled polyamide 6 with the 7% crosslinking agent (triallyl isocyanurate). Beta irradiation of the examined thermoplastic caused the growth of values of material parameters as micro-hardness, indentation modulus or indentation creep etc. From this point of view, there may be new application in areas with mechanical properties higher than their original properties. This study compared the mechanical properties of irradiated and non-irradiated PA6.


2020 ◽  
Vol 27 ◽  
pp. 112-115
Author(s):  
Martin Ovsík ◽  
Michal Staněk ◽  
Adam Dočkal ◽  
Petr Fluxa

Cross-linking is a process in which polymer chains are associated through chemical bonds. The cross-linking level can be adjusted by the irradiation dosage and often by means of a cross-linking booster. The polymer additional cross-linking influences the surface nano and micro layers in the way comparable to metals during the thermal and chemical-thermal treatments. Polybutylene terephthalate (PBT) can be found in a group of structural polymers, which are often used in industry, especially in automotive. Applying the technology of electron radiation induces a creation of 3D network structure, which improves the local mechanical properties. These were later measured by a depth sensing indentation (DSI) test. This state of the art method is based on immediate detection of indentation depth in relation to applied force. The creation of 3D network caused an increase in nano-mechanical properties values, such as indentation hardness and indentation modulus, in comparison to the virgin material. The indentation hardness rose by 80%, while the indentation modulus elevated by 62%. The selected structural materials, e.g. PBT, were modified by the electron irradiation in a positive way and as such could be moved to a group of high performance materials.


2016 ◽  
Vol 699 ◽  
pp. 37-42 ◽  
Author(s):  
Martin Ovsik ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Martin Reznicek

Radiation crosslinking of polyamidu 6 (PA 6) is a well-recognized modification of improving basic material characteristics. Radiation, which penetrated through specimens and reacted with the cross-linking agent, gradually formed cross-linking (3D net), first in the surface layer and then in the total volume, which resulted in considerable changes in specimen behaviour. This research paper deals with the possible utilization of irradiated PA6. The material already contained a special cross-linking agent TAIC (5 volume %), which should enable subsequent cross-linking by ionizing β – radiation (15, 30 and 45 kGy). The effect of the irradiation on mechanical behavior of the tested PA 6 was investigated. Material properties created by β – radiation are measured by nanoindentation test using the DSI method (Depth Sensing Indentation). Hardness increased with increasing dose of irradiation at everything samples; however results of nanoindentation test shows increasing in nanomechanical properties of surface layer. The highest values of nanomechanical properties were reached radiation dose of 45 kGy, when the nanomechanical values increased by about 95%. These results indicate advantage cross-linking of the improved mechanical properties.


2019 ◽  
Vol 56 (1) ◽  
pp. 65-70
Author(s):  
Gheorghe Radu Emil Maries ◽  
Constantin Bungau ◽  
Dan Chira ◽  
Traian Costea ◽  
Danut-Eugeniu Mosteanu

This paper analyzes the indentation hardness and the indentation elastic modulus variation depending on the variation of the grind percentage of polymer, when the other factors that can influence the injection molding remain unchanged. The analyzed polymers were: acrylonitrile butadiene styrene ABS MAGNUM 3453, polyamide PA 6.6 TECHNYL AR218V30 Blak and polyoxymethylene POM EUROTAL C9 NAT. The samples that were studied had different compositions in new and grinding material. The G-Series Basic Hardness Modulus at a Depth method was used. The increase of the grind percentage of ABS (from 0 to 100 %) leads to insignificant changes in the indentation hardness, indentation modulus, and maximum force applied to samples of tested material. The maximum hardness (0.137 GPa) of PA 6.6 is recorded in the case of the sample with 80% grind content, and the maximum hardness of POM is recorded as well in the case of the sample with 80% grind content, as being 0.215 GPa. The variation of the grind content in the analyzed samples determines changes in the evaluated parameters, depending on the type of polymer. Combining the new material with grind in proportions experimentally established for each techno polymer leads to changes in their mechanical properties.


2019 ◽  
Vol 952 ◽  
pp. 172-179
Author(s):  
Martin Ovsik ◽  
Michal Stanek ◽  
Adam Dockal ◽  
Martin Reznicek ◽  
Lenka Hylova

Surface properties are important aspect for correct function of construction (technical) parts. By improving mechanical properties of surface, an increase of abrasion resistance and wear resistance is reached. Longevity and economical aspect have an important role in final useful properties of product. Measurement of surface properties was done by ultra-nanoindentation technique (UNHT3), this is the best tool available right now, this technique is based on instrumented testing. Surface properties were modified by ionized radiation, that caused the creation of crosslinked structure in polyethylene. During radiation a three dimensional network is created, that improves final properties of product such as: hardness, elasticity modulus, thermal stability, etc. During ionized radiation there are two actions that take place at the same time, crosslinking and degradation. Goal of this paper is to consider how radiation intensity affects surface properties (indentation hardness, indentation modulus, deformation work, etc.) Another goal of this paper is to find out the optimal dose of radiation, that will cause more three dimensional crosslinking and less degradation as degradation causes decrease in mechanical properties.


2015 ◽  
Vol 662 ◽  
pp. 177-180 ◽  
Author(s):  
Ales Mizera ◽  
Miroslav Manas ◽  
David Manas ◽  
Martin Ovsik ◽  
Martina Kaszonyiová ◽  
...  

The presented article deals with the research of surface layer ́s micro-mechanical properties of modified LDPE by radiation cross-linking after temperature load. These micro-mechanical properties were measured by the DSI (Depth Sensing Indentation) method on samples which were non-irradiated and irradiated by different doses of the β – radiation and then were temperature loaded. The purpose of the article is to consider to what extent the irradiation process influences the resulting micro-mechanical properties measured by the DSI method. The LDPE tested showed significant changes of indentation hardness and modulus after temperature load.


Sign in / Sign up

Export Citation Format

Share Document