scholarly journals Study on the Influence of the Grind Percentage Over the Surface Hardness and Modulus of Elasticity of Parts Made of ABS, P6.6 and POM through Nanoindentation

2019 ◽  
Vol 56 (1) ◽  
pp. 65-70
Author(s):  
Gheorghe Radu Emil Maries ◽  
Constantin Bungau ◽  
Dan Chira ◽  
Traian Costea ◽  
Danut-Eugeniu Mosteanu

This paper analyzes the indentation hardness and the indentation elastic modulus variation depending on the variation of the grind percentage of polymer, when the other factors that can influence the injection molding remain unchanged. The analyzed polymers were: acrylonitrile butadiene styrene ABS MAGNUM 3453, polyamide PA 6.6 TECHNYL AR218V30 Blak and polyoxymethylene POM EUROTAL C9 NAT. The samples that were studied had different compositions in new and grinding material. The G-Series Basic Hardness Modulus at a Depth method was used. The increase of the grind percentage of ABS (from 0 to 100 %) leads to insignificant changes in the indentation hardness, indentation modulus, and maximum force applied to samples of tested material. The maximum hardness (0.137 GPa) of PA 6.6 is recorded in the case of the sample with 80% grind content, and the maximum hardness of POM is recorded as well in the case of the sample with 80% grind content, as being 0.215 GPa. The variation of the grind content in the analyzed samples determines changes in the evaluated parameters, depending on the type of polymer. Combining the new material with grind in proportions experimentally established for each techno polymer leads to changes in their mechanical properties.

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 637
Author(s):  
Saira Bano ◽  
Tanveer Iqbal ◽  
Naveed Ramzan ◽  
Ujala Farooq

Acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) are considered a well-known class of engineering thermoplastics due to their efficient use in automotive, 3D printing, and electronics. However, improvement in toughness, processability, and thermal stability is achieved by mixing together ABS and PC. The present study focuses on the understanding of surface mechanical characterization of acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) blends using nano-indentation. Polymer blends sheets with three different proportions of ABS/PC (75:25, 50:50, and 25:75) were fabricated via melt-processing and thermal press. Fourier transform infrared (FTIR) spectroscopy was performed to analyze the intermolecular interactions between the blends’ components. To understand the surface mechanical properties of ABS and PC blends, a sufficient number of nano-indentation tests were performed at a constant loading rate to a maximum load of 100 mN. Creeping effects were observed at the end of loading and start of unloading section. Elastic modulus, indentation hardness, and creep values were measured as a function of penetration displacement in the quasi-continuous stiffness mode (QCSM) indentation. Load-displacement curves indicated an increase in the displacement with the increase in ABS contents while a decreasing trend was observed in the hardness and elastic modulus values as the ABS content was increased. We believe this study would provide an effective pathway for developing new polymer blends with enhanced mechanical performance.


RSC Advances ◽  
2015 ◽  
Vol 5 (61) ◽  
pp. 49143-49152 ◽  
Author(s):  
Ningjing Wu ◽  
Zhaoxia Xiu

Silicone-microencapsulated aluminum hypophosphite (SiAHP) improved effectively the flame retardancy and significantly enhanced the notched impact strength of ABS/SiAHP composites.


2019 ◽  
Vol 383 (1) ◽  
pp. 1800018 ◽  
Author(s):  
Natália Ferreira Braga ◽  
Fabio Roberto Passador ◽  
Eduardo Saito ◽  
Fernando Henrique Cristovan

Author(s):  
Michal Jilich ◽  
Mattia Frascio ◽  
Massimiliano Avalle ◽  
Matteo Zoppi

The paper presents how a robotic gripper specific for grasping and handling of textiles and soft flexible layers can be miniaturized and improved by polymeric additive manufacturing-oriented re-design. Advantages of polymeric additive manufacturing are to allow a re-design of components with integrated functions, to be cost-effective equipment for small batches production and the availability of suitable materials for many applications. The drawback is that for design validation extended testing is still necessary because of lacks in standardization and that the mechanical properties are building parameters dependent. The outcomes are a lower complexity of the design overall and lower number of components. These are pursued taking advantage of the anisotropy of the additive manufacturing processed polymer and assigning appropriate shapes and linkages in the mechanisms. Set of common materials (polylactide, polyethylene terephthalate, acrylonitrile butadiene styrene) and technical (acrylonitrile styrene acrylate, polycarbonate/polybutylene terephthalate blend) are tested to obtain data for the modelling.


2018 ◽  
Vol 784 ◽  
pp. 49-54
Author(s):  
Peter Burik ◽  
Ladislav Pešek ◽  
Zuzana Andršová ◽  
Pavel Kejzlar

Nanomechanical testing using depth sensing indentation (DSI) provides a straightforward solution for quantitatively characterizing each of phases in microstructure because it is very powerful technique for characterization of materials in small volumes. Measuring the local properties (indentation hardness HIT, indentation modulus EIT, indentation energy: total Wtotal, elastic Welast, plastic Wplast) of each microstructure component separately in multiphase materials gives information that is valuable for the development of new materials and for modelling. The mechanical properties of materials measured by DSI are affected by the experimental procedure, by the measurement conditions and factors which result from the material characteristics and device construction. We have to determine the effect of individual factors on the measurement in order to reach the repeatability and to allow the comparing the mechanical properties of the material. The aim of this investigation is to determine the measurement factors that affect indentation hardness of individual microstructural components and global mechanical properties of thin steel sheets. We investigated the factors which result from the material characteristics (crystallographic orientation of grain, grain boundary and anisotropy), preparation of the sample surface (roughness of sample surface) and method of measurement (pile-up, ISE).


Author(s):  
Shajahan Bin Maidin ◽  
Zulkeflee Abdullah ◽  
Ting Kung Hieng

One of the disadvantages of fused deposition modeling (FDM) is waste produced during the printing processes. This investigation focuses on using 100% recycled Acrylonitrile Butadiene Styrene (ABS) for the FDM process. The recycling begins with re-granule the waste ABS material and produces it into a new filament. The new recycled filament was used to print the test specimen. Investigation on the mechanical properties and the surface quality of the test specimen and comparison with standard ABS specimen was done. The result shows that the recycled ABS can be produced into filament with 335°C of extrusion temperature and 1.5 mm/s travel speed of the extruder conveyor. The surface roughness of recycled specimen is 6.94% higher than the standard ABS specimen. For ultimate tensile strength, there is a small difference in X and Y orientation between the standard and the recycled ABS specimen which are 22.93% and 19.98%, respectively. However, in Z orientation, it is 52.33% lower. This investigation proves that ABS can be recycled without significantly affecting its mechanical properties.


2014 ◽  
Vol 703 ◽  
pp. 45-50
Author(s):  
Chao Wang ◽  
Ying Chun Li ◽  
Guo Sheng Hu

The blends of Nylon 6/Acrylonitrile-Butadiene-Styrene (ABS) with styrene-maleic anhydride (SMA) was prepared by melt blending as the compatilizer. Mechanical properties, dynamic mechanical analysis (DMA) and fracture appearances were determined. It was found that the impact and tensile strength firstly increased and then decreased along with the increase of the SMA content. The properties reached maximum values when the content of SMA was 1.5%. The results of DMA and scanning electron microscope (SEM) indicated that the addition of SMA can effectively enhance the compatibility of Nylon 6 and ABS. Key words: Nylon 6, ABS, SMA, blends, modification


2014 ◽  
Vol 496-500 ◽  
pp. 317-321
Author(s):  
Shou Hai Wang ◽  
Jun Gao ◽  
Gu Ren Fei ◽  
Ping Zhang ◽  
Jun Huang ◽  
...  

Acrylonitrile-butadiene-styrene (ABS) / polymethyl methacrylate (PMMA) with the addition of maleic anhydride grafted polystyrene (KT-5) and polyolefin elastomer (POE) were melt processed in a co-rotating twin-screw extruder. The effect of KT-5 and POE content on the mechanical properties of ABS/PMMA was investigated. Experiment results indicate that KT-5 can improve the tensile strength and the composites are toughened effectively as the addition of POE. According to Orthogonal tests, it demonstrates that POE ha a greater effect on the blends than KT-5, and there exist no obvious interactivity between the two components.


Sign in / Sign up

Export Citation Format

Share Document