Elastoplastic Equilibrium of a Hollow Thick-Walled Radially Inhomogeneous Ball

2019 ◽  
Vol 805 ◽  
pp. 198-203
Author(s):  
Vladimir Andreev

The article deals with the axisymmetric elastoplastic problem for a hollow thick-walled ball (plane deformed state), loaded from the inside and outside by uniform pressures proportional to one parameter. The material is considered to be perfectly plastic, with the elastic modulus and yield strength generally are arbitrary functions of the radius. In addition, the material is considered to be incompressible in both plastic and elastic zones. On the basis of the criteria for the plasticity of Huber - Mises and Tresca - Saint-Venant, the radius at which the first plastic deformations occur is determined. It is shown that, depending on the functions of the inhomogeneity of elastic and plastic parameters and loads, the occurrence of plastic deformations is possible both on the surfaces and on the inner walls of the ball.

2019 ◽  
Vol 893 ◽  
pp. 6-12
Author(s):  
Vladimir Andreev

The article deals with the axisymmetric elastoplastic problem for a hollow thick-walled cylinder (plane deformed state), loaded from the inside and outside by uniform pressures proportional to one parameter. The material is considered to be perfectly plastic, with the elastic modulus and yield strength generally are arbitrary functions of the radius. In addition, the material is considered to be incompressible in both plastic and elastic zones. On the basis of the criteria for the plasticity of Huber - Mises and Tresca - Saint-Venant, the radius at which the first plastic deformations occur is determined. It is shown that, depending on the functions of the inhomogeneity of elastic and plastic parameters and loads, the occurrence of plastic deformations is possible both on the surfaces and on the inner walls of the cylinder.


Author(s):  
Kuk-Hee Lee ◽  
Yun-Jae Kim

This paper quantifies the effect of the yield strength-to-elastic modulus ratio (yield strain) on plastic loads (defined by the twice-elastic-slope according to the ASME code) for 90° elbows under in-plane and out-of-plane bending. Results are based on extensive and systematic FE limit analyses assuming elastic-perfectly plastic materials. Based on FE results, a simple approximation of plastic loads of pipe bends, incorporating the yield strength-to-elastic modulus ratio effect, is proposed. To validate the proposed approximation, predicted plastic moments are compared with published full-scale pipe test data, showing that the proposed approximation gives overall lower than the FE results and close to experimental values.


2013 ◽  
Vol 405-408 ◽  
pp. 3182-3185 ◽  
Author(s):  
Vladimir I. Andreev

The paper presents the solution of elastic-plastic problem of the equilibrium of a thick-walled cylindrical shell under the influence of internal and external pressures. We consider a perfectly plastic material, elastic modulus and yield strength which are continuous functions of the radius. It is shown that plastic deformations may occur on both the inner surface of the shell and the inside of its wall. Defined stresses and strains in the elastic and plastic zones, as well the displacements in the shell until fracture.


2021 ◽  
Vol 5 (7) ◽  
pp. 179
Author(s):  
Brice Taillet ◽  
René Pailler ◽  
Francis Teyssandier

Ceramic matrix composites (CMCs) have been prepared and optimized as already described in part I of this paper. The fibrous preform made of Hi-Nicalon S fibers was densified by a matrix composed of Si2N2O prepared inside the CMC by reacting a mixture of Si and SiO2 under high nitrogen pressure. This part describes the oxidation resistance and mechanical properties of the optimized CMC. The CMC submitted to oxidation in wet oxygen at 1400 °C for 170 h exhibited an oxidation gradient from the surface to almost the center of the sample. In the outer part of the sample, Si2N2O, Si3N4 and SiC were oxidized into silica in the cristobalite-crystallized form. The matrix microstructure looks similar to the original one at the center of the sample, while at the surface large pores are observed and the fiber/matrix interphase is consumed by oxidation. The elastic modulus and the hardness measured at room temperature by nano-indentation are, respectively, 100 and 8 GPa. The elastic modulus measured at room temperature by tensile tests ranges from 150 to 160 GPa and the ultimate yield strength from 320 to 390 MPa, which corresponds to a yield strain of about 0.6%. The yield strength identified by acoustic emission is about 40 MPa.


2016 ◽  
Vol 847 ◽  
pp. 25-30 ◽  
Author(s):  
Dong Mei Tian ◽  
Jian Yin

As one of the key components of non-ballast slab track in high speed railway, cement asphalt emulsion mortar (CAM) has low compressive strength and low elastic modulus. This makes CAM possible to be served as supporting, height-adjusting, vibration-dissipating and deformation-fitting sandwich-layer between pre-stress slab and concrete roadbed. To study the fatigue behavior of the CAM, fatigue tests were conducted at room temperature and negative temperature, respectively. The permanent strain, elastic modulus and yield strength of fatigue-tested specimens were compared to the reference one. The results showed that the small permanent deformation lead to very little displacement differences among the slab track system. Secondly, the elastic modulus and yield strength of fatigue test specimens were both higher than that of reference one. Because the fatigue process might strengthen the CAM by compacting micro-cracks. Additionally, arising from the temperature sensitivity of asphalt, viscosity behavior of asphalt mortar at room temperature is changed to brittleness behavior at negative temperature.


Author(s):  
J.A. Brogan ◽  
C.C. Berndt ◽  
A. Claudon ◽  
C. Coddet

Abstract The mechanical properties of EMAA copolymer are dependent upon the thermal spray processing parameters. The parameters determine coating temperatures which, in turn, affects the microstructure. If the deposition temperature is too low, (104 °C for PFl 13 and 160 °C for PFl 11) coatings have low strengths and low energy to break values. Increased coating temperatures allow the particles to fully coalesce resulting in maximized strength and elongation to break. However, at 271 °C, PFl 11 had visible porosity which decreased both strength and elastic modulus. Pigment acts as reinforcement in the sense that the modulus increased but the elongation to break decreased, thus reducing the energy to break. Water quenching reduces the elastic modulus and yield strength, but increases the elongation to break for both EMAA formulations. The mechanical properties of post consumer commingled plastic and PCCP / EMMA blends improved if the recycled plastic was pre-processed by melt-compounding. Melt compounding increased the strength and toughness by improving the compatibility among the various polymer constituents. The addition of PCCP increases the modulus and yield strength of ethylene methaciylic acid copolymer.


2020 ◽  
Vol 4 (1) ◽  
pp. 19 ◽  
Author(s):  
Penchal Reddy Matli ◽  
Vyasaraj Manakari ◽  
Gururaj Parande ◽  
Manohar Reddy Mattli ◽  
Rana Abdul Shakoor ◽  
...  

In the present study, Ni50Ti50 (NiTi) particle reinforced aluminum nanocomposites were fabricated using microwave sintering and subsequently hot extrusion. The effect of NiTi (0, 0.5, 1.0, and 1.5 vol %) content on the microstructural, mechanical, thermal, and damping properties of the extruded Al-NiTi nanocomposites was studied. Compared to the unreinforced aluminum, hardness, ultimate compression/tensile strength and yield strength increased by 105%, 46%, 45%, and 41% while elongation and coefficient of thermal expansion (CTE) decreased by 49% and 22%, respectively. The fabricated Al-1.5 NiTi nanocomposite exhibited significantly higher damping capacity (3.23 × 10−4) and elastic modulus (78.48 ± 0.008 GPa) when compared to pure Al.


2013 ◽  
Vol 683 ◽  
pp. 145-149
Author(s):  
Xing Lei Hu ◽  
Ya Zhou Sun ◽  
Ying Chun Liang ◽  
Jia Xuan Chen

Monte Carlo (MC) method and molecular dynamics (MD) are combined to analyze the influence of ageing on mechanical properties of machined nanostructures. Single crystal copper workpiece is first cut in MD simulation, and then the machined workpiece is used in MC simulation of ageing process, finally the tensile mechanical properties of machined nanostructures before and after ageing are investigated by MD simulation. The results show that machining process and ageing have obvious influence of tensile mechanical properties. After machining, the yield strength, yield strain, fracture strain and elastic modulus reduce by 36.02%, 28.86%, 20.79% and 7.16% respectively. However, the yield strength, yield strain and elastic modulus increase by 4.84%, 1.41% and 1.02% respectively, fracture strain reduce by 24.53% after ageing process. To research the ageing processes of machined nanostructures by MC simulation is both practical and meaningful.


2019 ◽  
Vol 950 ◽  
pp. 65-69
Author(s):  
Sun Fei ◽  
Xu Cheng

In order to study the effect of temperature on the mechanical properties of H90 copper strip material, the H90 copper strip test pieces were heated to different temperatures (20~600 °C) for tensile test; the yield strength, tensile strength, elastic modulus and elongation of H90 copper strip at different temperatures were obtained. Based on the test results, the empirical models of yield strength, tensile strength, elastic modulus of H90 copper strip at high temperature were established; the test showed that, with the increase of temperature, the yield strength, tensile strength and elastic modulus of H90 copper strip decreased greatly, and the elongation after fracture first increased-decreased-increased at 20~600 °C. The study results in this paper provide basic material data for analyzing the effect of temperature on the continuous firing of firearms and other weapons.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1450 ◽  
Author(s):  
Stefan Alexander Berger ◽  
Ilya Vladimirovich Okulov

Open porous dendrite-reinforced TiMo alloy was synthesized by liquid metal dealloying of the precursor Ti47.5Mo2.5Cu50 (at.%) alloy in liquid magnesium (Mg). The porous TiMo alloy consists of α-titanium and β-titanium phases and possesses a complex microstructure. The microstructure consists of micrometer scale β-titanium dendrites surrounded by submicrometer scale α-titanium ligaments. Due to the dendrite-reinforced microstructure, the porous TiMo alloy possesses relatively high yield strength value of up to 180 MPa combined with high deformability probed under compression loading. At the same time, the elastic modulus of the porous TiMo alloy (below 10 GPa) is in the range of that found for human bone. This mechanical behavior along with the open porous structure is attractive for biomedical applications and suggests opportunities for using the porous TiMo alloy in implant applications.


Sign in / Sign up

Export Citation Format

Share Document