Osteoblast Cell Response to LIPSS-Modified Ti-Implants

2019 ◽  
Vol 813 ◽  
pp. 322-327 ◽  
Author(s):  
Leonardo Orazi ◽  
Maksym Pogorielov ◽  
Volodumyr Deineka ◽  
Evhenia Husak ◽  
Victoriia Korniienko ◽  
...  

In the present work, the surface of Ti-6Al-7Nb samples was patterned with Laser Induced Periodic Surface Structures in order to improve biocompatibility, increase tissue ingrowth and decrease bacterial adhesion and inflammatory response for applications in dental and orthopedic implants. Polished and sandblasted disks 10 mm in diameter were treated generating LIPSS under two different sets of parameters. The surface morphology and chemistry were investigated both by secondary electrons imaging, EDS analysis and Atomic Force Microscopy. Primary rat osteoblast culture (passage 2) was used to assess cell toxicity and biocompatibility. Alamar Blue assay was used to access cell viability and proliferation on day 1, 3 and 7. The difference between cell adhesion on polished and sandblasted surface as well as between polished and LIPSS-modified surface are described and discussed.

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 900
Author(s):  
Maria Vardaki ◽  
Aida Pantazi ◽  
Ioana Demetrescu ◽  
Marius Enachescu

In this work we present the results of a functional properties assessment via Atomic Force Microscopy (AFM)-based surface morphology, surface roughness, nano-scratch tests and adhesion force maps of TiZr-based nanotubular structures. The nanostructures have been electrochemically prepared in a glycerin + 15 vol.% H2O + 0.2 M NH4F electrolyte. The AFM topography images confirmed the successful preparation of the nanotubular coatings. The Root Mean Square (RMS) and average (Ra) roughness parameters increased after anodizing, while the mean adhesion force value decreased. The prepared nanocoatings exhibited a smaller mean scratch hardness value compared to the un-coated TiZr. However, the mean hardness (H) values of the coatings highlight their potential in having reliable mechanical resistances, which along with the significant increase of the surface roughness parameters, which could help in improving the osseointegration, and also with the important decrease of the mean adhesion force, which could lead to a reduction in bacterial adhesion, are providing the nanostructures with a great potential to be used as a better alternative for Ti implants in dentistry.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3460 ◽  
Author(s):  
Dominik Fajstavr ◽  
Klára Neznalová ◽  
Václav Švorčík ◽  
Petr Slepička

A laser induced periodic surface structure (LIPSS) on graphene doped polystyrene was prepared by the means of a krypton fluoride (KrF) laser with the wavelength of 248 nm and precisely desired physico-chemical properties were obtained for the structure. Surface morphology after laser modification of polystyrene (PS) doped with graphene nanoplatelets (GNP) was studied. Laser fluence values of modifying laser light varied between 0–40 mJ·cm−2 and were used on polymeric PS substrates doped with 10, 20, 30, and 40 wt. % of GNP. GNP were incorporated into PS substrate with the solvent casting method and further laser modification was achieved with the same amount of laser pulses of 6000. Formed nanostructures with a periodic pattern were examined by atomic force microscopy (AFM). The morphology was also studied with scanning electron microscopy SEM. Laser irradiation resulted in changes of chemical composition on the PS surface, such as growth of oxygen concentration. This was confirmed with energy-dispersive X-ray spectroscopy (EDS).


2006 ◽  
Vol 59 (6) ◽  
pp. 381 ◽  
Author(s):  
Annabelle Blom ◽  
Gregory G. Warr ◽  
Erica J. Wanless

The evolution of adsorbed dialkyl chained quaternary ammonium surfactant films with different alkyl chain lengths has been observed in situ using atomic force microscopy (AFM). Both di-C12DAB and di-C14DAB form a cohesive bilayer immediately, which is observed to strengthen with equilibration time. The slow equilibrium of di-C16DAB allows examination of the film at less than saturated coverage and reveals growth of the bilayer through the nucleation and coalescence of patches. The difference in height between higher and lower regions is insufficient for bilayer and monolayer regions and the postulated structure is that of regions of bilayer with different packing densities. The effect of temperature on film morphologies near the gel transition is also examined.


2016 ◽  
Vol 7 ◽  
pp. 220-227 ◽  
Author(s):  
Maryse D Nkoua Ngavouka ◽  
Pietro Capaldo ◽  
Elena Ambrosetti ◽  
Giacinto Scoles ◽  
Loredana Casalis ◽  
...  

Background: DNA hybridization is at the basis of most current technologies for genotyping and sequencing, due to the unique properties of DNA base-pairing that guarantee a high grade of selectivity. Nonetheless the presence of single base mismatches or not perfectly matched sequences can affect the response of the devices and the major challenge is, nowadays, to distinguish a mismatch of a single base and, at the same time, unequivocally differentiate devices read-out of fully and partially matching sequences. Results: We present here two platforms based on different sensing strategies, to detect mismatched and/or perfectly matched complementary DNA strands hybridization into ssDNA oligonucleotide monolayers. The first platform exploits atomic force microscopy-based nanolithography to create ssDNA nano-arrays on gold surfaces. AFM topography measurements then monitor the variation of height of the nanostructures upon biorecognition and then follow annealing at different temperatures. This strategy allowed us to clearly detect the presence of mismatches. The second strategy exploits the change in capacitance at the interface between an ssDNA-functionalized gold electrode and the solution due to the hybridization process in a miniaturized electrochemical cell. Through electrochemical impedance spectroscopy measurements on extended ssDNA self-assembled monolayers we followed in real-time the variation of capacitance, being able to distinguish, through the difference in hybridization kinetics, not only the presence of single, double or triple mismatches in the complementary sequence, but also the position of the mismatched base pair with respect to the electrode surface. Conclusion: We demonstrate here two platforms based on different sensing strategies as sensitive and selective tools to discriminate mismatches. Our assays are ready for parallelization and can be used in the detection and quantification of single nucleotide mismatches in microRNAs or in genomic DNA.


2009 ◽  
Vol 151 ◽  
pp. 197-202 ◽  
Author(s):  
Sirinrath Sirivisoot ◽  
Rajesh A. Pareta ◽  
Thomas J. Webster

Implant infection leading to revision surgery can be avoided by incorporating controllable antibiotic release from titanium (Ti) implant surfaces. In this study, penicillin/streptomycin (P/S) and dexamethasone (Dex) were successfully immobilized via electropolymerization within polypyrrole membranes coated on the surface of Ti, which is widely used in orthopedic applications. In vitro results showed that greater numbers of osteoblasts adhered on these polymer-coated substrates than on currently-used unmodified Ti. X-ray photoelectron spectroscopy was used to monitor and compare the reaction effectiveness and the yield of electropolymerization. Polypyrrole membranes conjugated with P/S and Dex, and then coated with PLGA, all possessed nanometer scale roughness, as analyzed by atomic force microscopy. In summary, this study demonstrated that drugs incorporated within electroactive polypyrrole membranes, whose release was controlled by applying voltages, supported osteoblast adhesion and could potentially fight bacterial infection.


2009 ◽  
Vol 610-613 ◽  
pp. 175-178 ◽  
Author(s):  
Namsrai Javkhlantugs ◽  
Enkhbaatar Ankhbayar ◽  
Khishigjargal Tegshjargal ◽  
Damdin Enkhjargal ◽  
Chimed Ganzorig

The morphological surface change of untreated and treated fibers of the Mongolian goat cashmere was investigated by atomic force microscopy (AFM) at ambient conditions. The cuticle scale heights of the Mongolian goat cashmere fibers were measured by the AFM for the fibers before and after treatment. The experimental results showed that the difference between the fine structure of the cuticle and surface roughness of untreated and treated fibers. We found that the surface morphological change of the cashmere fibers was strongly degraded after the bleaching process.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Ernesto Beltrán-Partida ◽  
Benjamin Valdez-Salas ◽  
Alan Escamilla ◽  
Aldo Moreno-Ulloa ◽  
Larysa Burtseva ◽  
...  

The purpose of the present study was to synthetize 80 nm diameter TiO2 nanotubes (NTs) on Ti6Al4V alloy using a commercially superoxidized water (SOW) enriched with fluoride to reduce anodization time and promote the antibacterial efficacy againstStaphylococcus aureus(S. aureus). The alloy discs were anodized for 5 min and as a result, NTs of approximately 80 nm diameters were obtained with similar morphology as reported in previous studies using longer anodization times (1-2 h). Filed emission-scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX) were used to characterize the materials surfaces. The NTs showed significantly decreasedS. aureusviability after 1, 3, and 5 days of culture in comparison to nonanodized alloy. Likewise, SEM analysis also suggested lower bacterial adhesion on the NTs surface. No differences in bacterial morphology and topography were observed on both materials, as analyzed by SEM and atomic force microscopy (AFM). In conclusion, 80 nm diameter NTs were grown on Ti6Al4V alloy in 5 min by using a SOW solution enriched with fluoride, which resulted in a material with promoted antibacterial efficacy againstS. aureusfor up to 5 days of in vitro culture when compared to nonanodized alloy.


2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Abhinay Mishra ◽  
Pralay Maiti

Abstract Structural variation and its effect on the properties of aromatic polyurethanes (PUs) with different chain structures have been reported. Polarized optical microscopic studies of aromatic PUs demonstrate the development of micro clusters with increasing hard segment content (HSC). Higher crystallinity has also been proven from differential scanning calorimeter (DSC) and X-ray diffraction (XRD) studies. A globular pattern has been observed through atomic force microscopy (AFM) and the pattern depends on the type of diisocyanate used to prepare the PU. The difference in surface morphology is evident for two different PUs. The tensile modulus increases systematically with increasing HSC while toughness decreases, due to the presence of bigger crystallites in higher HSC polymer. Both the modulus and toughness vary on the type of diisocyanate present in PUs.


Sign in / Sign up

Export Citation Format

Share Document