Study of Damage of the Specimens in Acrylonitrile Butadiene Styrene (ABS), Based on a Static Damage Study and Damage by Unified Theory to Predict the Life of the Material

2019 ◽  
Vol 820 ◽  
pp. 40-47
Author(s):  
Fatima Sabah ◽  
Abderrazak En-Naji ◽  
Achraf Wahid ◽  
Mohamed El Ghorba ◽  
Hamid Chakir

Plastics is very important in our lives; they used in all sectors from the high-performance industry to the mass-market industry. In this article, we will interest on the thermoplastic Acrylonitrile Butadiene Styrene (ABS) polymer; this choice is justified by the compatibility of ABS with a wide range of materials. The aim of this work is to evaluate the damage and the reliability of ABS for predict its residual lifetime.To do this, we used notched specimens of ABS prepared according to the ASTM standard, these last one are subject to tensile test at different ray of notch, The experimental results obtained have allowed us to follow the evolution the ultimate stress and then to calculate the damage. Thereafter, it was possible to identify three stages of damage that can predict at first initiation of the damage and the critical damage. Therefore, be able to intervene in time for predictive maintenance. This study also includes a correlation between two methods of calculating the damage namely static damage and damage by unified theory and this by analogy to cyclical behavior. The comparison showed good agreement.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jiquan Li ◽  
Yadong Jia ◽  
Taidong Li ◽  
Zhou Zhu ◽  
Hangchao Zhou ◽  
...  

Temperature greatly influences the mechanical response of acrylonitrile butadiene styrene (ABS). The tensile behavior of ABS was explored in this study. The tensile experiments were conducted at a wide range of temperatures (from 40°C to 130°C). A model was established to reveal the quantitative relationship between temperature and tensile behavior of ABS. The results of tensile experiments showed that tensile behavior of ABS exhibited glassy state and high-elastics state. The model was also divided into two parts that rely on the boundary of glass transition temperature, in which the parameters of the model were calculated by the fitting method. The model predictions showed a good agreement with the results of the experimental tensile test. This study provides the quantitative relationship between temperature and tensile behavior of ABS, which saves time and experimental costs.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Max Huber ◽  
Andreas Zienert ◽  
Perez Weigel ◽  
Martin Schüller ◽  
Hans-Reinhard Berger ◽  
...  

Purpose The purpose of this paper is to analyze and optimize synthetic jet actuators (SJAs) by means of a literature-known one-dimensional analytical model. Design/methodology/approach The model was fit to a wide range of experimental data from in-house built SJAs with different dimensions. A comprehensive parameter study was performed to identify coupling between parameters of the model and to find optimal dimensions of SJAs. Findings The coupling of two important parameters, the diaphragm resonance frequency and the cavity volume, can be described by a power law. Optimal orifice length and diameter can be calculated from cavity height in good agreement with literature. A transient oscillation correction is required to get correct simulation outcomes. Originality/value Based on these findings, SJA devices can be optimized for maximum jet velocity and, therefore, high performance.


2019 ◽  
Vol 820 ◽  
pp. 147-158
Author(s):  
Abderrazak En-Naji ◽  
Nadia Mouhib ◽  
Fatima Majid ◽  
Hicham ElKihal ◽  
Mohamed El Ghorba

In this paper, we are dealing with the study of the mechanical behavior of an amorphous polymer, acrylonitrile butadiene styrene "ABS". In fact, uniaxial tensile tests on rectangular specimens containing a combined defect, with simple and double notches, has been done. The proposed approach develop a method, based on energy parameter, to calculate the evolution of damage over the materials’ life. This method can be used to predict quantitatively the risk of sudden rupture in a structure. Therefore, the damage evaluation based on the residual energy method was compared to the unified theory one for different loading levels. The prediction of damage by experimental models has led to the determination of the three stages of damage evolution, which are the initiation, propagation and complete deterioration of the material. Thus, the concept of reliability is used to specify the critical life fraction, which is similar to the notch depth (βc) of a modeled defect as a combined defect on an ABS sample. In addition, the unified theory was used in this work, to define on the one hand, the parameter of damage which is the internal variable which describes the failure level of the structure in function of life fraction, on the other hand, for the theoretical evaluation of the level of damage. Finally, we have proved that the theoretical and experimental results show a good agreement.


2019 ◽  
Vol 89 (4) ◽  
pp. 567
Author(s):  
А.Д. Евстифеев ◽  
Г.А. Волков ◽  
А.А. Чеврычкина ◽  
Ю.В. Петров

AbstractTest results are presented for an additive material prepared of acrylonitrile-butadiene-styrene on a 3D printer. Dynamic tension experiments have been carried out using a tower-type drop hammer with an accelerator. Data obtained from different specimens demonstrate that high-strain-rate tensile experiments are feasible if the working part of the specimen is decreased. A theoretical analysis of test data using the incubation time criterion has been performed, and it has been found that analytical results are in good agreement with experimental data.


1977 ◽  
Vol 32 (11) ◽  
pp. 1195-1206 ◽  
Author(s):  
Joachim Seidel

Abstract The Method of Model Microfields proposed by Brissaud and Frisch is applied to calculate Stark broadened profiles of hydrogen lines in the static ion approximation. Numerical results for L-α, H-α, and H-β are found to be in good agreement with those derived from the unified theory by Vidal, Cooper, and Smith over a wide range of plasma densities and temperatures. This demon­ strates that reliable line profiles may be obtained from the microfield distribution and covariance alone, more complicated statistical features being less important in this context.


2019 ◽  
Vol 820 ◽  
pp. 203-211
Author(s):  
Fatima Sabah ◽  
Achraf Wahid ◽  
Fatimaezzahra Nassih ◽  
Mohamed El Ghorba ◽  
Hamid Chakir

The development of polymers has not stopped growing and taking more and more emphasis in our lives. From high-performance industries to mass-market industries, polymers are ubiquitous in every aspect of our lives, from where comes the pressing need to know their properties, characteristics, and behaviors more rigorously. This work is based on a study of the mechanical characterizations of thermoplastic polymers under the effects of damage. To serve this purpose, an experimental study was carried out on thermoplastic ABS (Acrylonitrile Butadiene Styrene) specimens. At first, we worked on altered specimens to define the mechanical characteristics of our material such as the elastic limit, the stress maximum, the breaking stress and the Young's modulus. On the one hand, and on the other hand we have created geometrical defects (discontinuity) on specimens in (ABS), to have the effect of defects on the mechanical characteristics of the material, afterwards a study of damage carried out by two methods to determine the critical fraction of life. To determine the lifetime of the ABS.


2020 ◽  
Vol 17 (5) ◽  
pp. 570-588
Author(s):  
Ehsan Firouzi ◽  
Hassan Hajifatheali ◽  
Ebrahim Ahmadi ◽  
Mohammadreza Marefat

Acrylonitrile is a key precursor in the production of a wide range of products in the chemical industries. The major products of acrylonitrile include acrylonitrile butadiene styrene resin, acrylic fibers, and adiponitrile. The demand for the roduction of acrylonitrile is affected by the global economy but because of the development of living standards; the demand for producing acrylonitrile and its derivations are significantly increasing. So in 2016, China alone produced 32% of the world’s acrylonitrile, and its production is expected to have a 55% increase in 2021. Acrylonitrile and its derivations have wide applications in different industries like car manufacturing, electronics, aerospace, and textile. Considering the importance of the acrylonitrile precursor in the current world, in this study, we discuss and investigate its production processes, the obtained copolymers, and polyacrylonitrile production and its application in the carbon fibers and compare it with other carbon fiber precursors such as mesophase pitch and cellulose. We also focus on its marketing in the world.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1413 ◽  
Author(s):  
Aubrey Woern ◽  
Dennis Byard ◽  
Robert Oakley ◽  
Matthew Fiedler ◽  
Samantha Snabes ◽  
...  

Fused particle fabrication (FPF) (or fused granular fabrication (FGF)) has potential for increasing recycled polymers in 3-D printing. Here, the open source Gigabot X is used to develop a new method to optimize FPF/FGF for recycled materials. Virgin polylactic acid (PLA) pellets and prints were analyzed and were then compared to four recycled polymers including the two most popular printing materials (PLA and acrylonitrile butadiene styrene (ABS)) as well as the two most common waste plastics (polyethylene terephthalate (PET) and polypropylene (PP)). The size characteristics of the various materials were quantified using digital image processing. Then, power and nozzle velocity matrices were used to optimize the print speed, and a print test was used to maximize the output for a two-temperature stage extruder for a given polymer feedstock. ASTM type 4 tensile tests were used to determine the mechanical properties of each plastic when they were printed with a particle drive extruder system and were compared with filament printing. The results showed that the Gigabot X can print materials 6.5× to 13× faster than conventional printers depending on the material, with no significant reduction in the mechanical properties. It was concluded that the Gigabot X and similar FPF/FGF printers can utilize a wide range of recycled polymer materials with minimal post processing.


Sign in / Sign up

Export Citation Format

Share Document