The Effects of Various Ratios of Hybrid Filler to Rubber Vulcanisates Properties Based on Passenger Car Tyre Tread Compounds

2020 ◽  
Vol 856 ◽  
pp. 169-174
Author(s):  
Chatchatree Thongsaen ◽  
Pongdhorn Sea-Oui ◽  
Chakrit Sirisinha

Solution styrene-butadiene rubber (SSBR) reinforced by hybrid fillers of carbon black (CB) and silica (PSi) was prepared with various CB/PSi ratios. Rheological and mechanical properties of rubber compounds and vulcanisates were investigated. Results of compounds demonstrate that, with increasing CB fraction, increases in the magnitude of the Payne effect and Mooney viscosity were found. On the contrary, with increased loading of PSi, increases in optimum cure time (tc90) and cure torque difference were evidenced. The results suggest superiority in filler dispersion level and cure efficiency in the systems filled with high PSi fraction due to the presence of Bis [3-(triethoxysilyl) propyl] tetrasulphide (TESPT or Si-69) as a silane coupling agent. As for vulcanisate properties, the systems with increased PSi fraction exhibit enhancement in mechanical strength and elastic contribution, which are in good agreement with rubber compound properties. Also, the decrease in loss factor at 60 °C was observed with increasing PSi fraction, suggesting the desirable reduction in rolling resistance of tyre tread.

2015 ◽  
Vol 815 ◽  
pp. 24-28
Author(s):  
N.R. Munirah ◽  
N.Z. Noriman ◽  
M.Z. Salihin ◽  
H. Kamarudin ◽  
M.H. Fatin ◽  
...  

The role of activated carbon (AC) in rubber compounds was investigated to better understand the reinforcing mechanism. The activated carbon filled styrene butadiene rubber vulcanizates (SBR-AC) using bamboo activated carbon as filler were prepared by using two-roll mill and cured at 160 °C. AC filler loading from 10 to 50 phr (part per hundred rubber) were used in this study. Study into the influences of filler loading on the cure characteristics, swelling behaviour and physical properties (hardness and resilience) of SBR-AC vulcanizates were carried out. It was observed that SBR-AC vulcanizates has better cure characteristics compared to the styrene butadiene rubber gum vulcanizate (SBR-GV) which is a non-filled vulcanizate. The results showed that the scorch time (ts2) decreased with increasing filler loading. The cure time (tc90) slightly decreased up to 20 phr before a rise as the filler loading increased. The minimum torque (ML) of SBR vulcanizate increased and the maximum torque (MH) decreased up to 20 phr but then increased with increasing filler loading. The cure rate index (CRI) of SBR-GV vulcanizate was higher than that of all SBR-AC vulcanizates. Up to 20 phr of filler loading, the CRI increased before a decline occurred as the filler loading increased. As expected, the hardness value of SBR-AC vulcanizates was higher compared to SBR-GV vulcanizate which has lower resilience. The hardness and crosslink density showed an increasing trend meanwhile the resilience was adversely affected by the increase in filler loading. Bamboo activated carbon showed some potential enhancement on the reinforcing and physical properties of the vulcanizates.


e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Betty L. López ◽  
León Dario Pérez ◽  
Mónica Mesa ◽  
Ligia Sierra ◽  
Eric Devaux ◽  
...  

AbstractMesoporous silica is used as filler for styrene-butadiene rubber (SBR); filler-polymer interactions are compared with those exhibited when Ultrasil silica (VN3) is used. A silane coupling agent is added to improve filler dispersion and its influence on the bound-rubber formation is also investigated. The bound-rubber content is higher for the mesoporous silica and increases further for the sample containing silane. The increase is explained by chemical interactions between filler and rubber and penetration of the rubber chains into the mesopores. This is confirmed by 13C solid-state NMR, IR spectroscopy and differential scanning calorimetry. Dynamic mechanical thermal analysis shows higher storage modulus for the rubber filled with mesoporous silica.


2015 ◽  
Vol 3 (4) ◽  
pp. 1-5
Author(s):  
Indra Surya ◽  
Syahrul Fauzi Siregar

By using a semi-efficient vulcanization system, the cure characteristics and crosslink density of natural rubber/styrene butadiene rubber (NR/SBR) blends were studied with a blend ratio from 0 to 100% rubber. The scorch time, optimum cure time, and torque difference value of the blended rubber compounds were determined by using the Moving-Die Rheometer (MDR 2000). The crosslink density was determined by the Flory—Rehner approach. Results indicate that the scorch and cure times, ts2 and t90, of the NR/SBR blends increased with increasing the SBR content. Whilst, the maximum values of torque difference and crosslink density were performed by the NR/SBR blend with a blend ratio of 75/25.


2021 ◽  
Author(s):  
Anand G ◽  
S. Vishvanathperumal

Abstract In the current research, investigation of natural rubber (NR)/styrene butadiene rubber (SBR) reinforced with carbon black (CB)/silica (Si) and with and without silane coupling agent (Si69) was analyzed. The total hybrid filler (CB/Si) concentration in the composite was fixed at 50 phr. Cure characteristics, mechanical properties and surface morphology were examined. The addition of a silane coupling agent improves the mechanical properties of NR/SBR rubber composites reinforced with CB/Si hybrid fillers. Compared with NR/SBR composites with Si69, addition of 0/50 CB/Si resulted in 53% decrease of tensile strength and 81% increase of elongation at break, superior to that of NR/SBR composites without Si69. When Si69 was used as a binding agent, the scanning electron micrograph (SEM) of the tensile fractured surface clearly shows the better dispersion of hybrid fillers in the NR/SBR matrix.


2020 ◽  
Vol 39 (1) ◽  
pp. 81-90
Author(s):  
An Zhao ◽  
Xuan-Yu Shi ◽  
Shi-Hao Sun ◽  
Hai-Mo Zhang ◽  
Min Zuo ◽  
...  

1999 ◽  
Vol 35 (9) ◽  
pp. 1687-1693 ◽  
Author(s):  
N.S. Saxena ◽  
P. Pradeep ◽  
G. Mathew ◽  
S. Thomas ◽  
M. Gustafsson ◽  
...  

2020 ◽  
Vol 10 (20) ◽  
pp. 7244
Author(s):  
Sung Ho Song

As eco-friendly “green tires” are being developed in the tire industry, conventionally used carbon black is being replaced with silica in rubber compounds. Generally, as a lubricant and dispersing agent, processing aids containing zinc ions have been employed as additives. However, as zinc is a heavy metal, alternative eco-friendly processing aids are required to satisfy worldwide environmental concerns. Furthermore, non-toxic, degradable, and renewable processing aids are required to improve the mechanical properties of the rubber composites. In this study, we evaluated the effects of diverse silica-based processing aids containing hydrocarbon, benzene, and hydroxyl functional groups on the mechanical properties of rubber composites. Among them, rubber composites that used amphiphilic terpene phenol resin (TPR) with hydrophilic silica showed compatibility with the hydrophobic rubber matrix and were revealed to improve the mechanical and fatigue properties. Furthermore, owing to the enhanced dispersion of silica in the rubber matrix, the TPR/styrene butadiene rubber composites exhibited enhanced wet grip and rolling resistance. These results indicated that TPR had multifunctional effects at low levels and has the potential for use as a processing aid in silica-based rubber composites in tire engineering applications.


Polymers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 767 ◽  
Author(s):  
Dániel Simon ◽  
István Halász ◽  
József Karger-Kocsis ◽  
Tamás Bárány

Because of the chemically crosslinked 3D molecular structure of rubbers, their recycling is a challenging task, especially when cost efficiency is also considered. One of the most straightforward procedures is the grinding of discarded rubber products with subsequent devulcanization. The devulcanized rubber can be used as a feedstock for fresh rubber compounds or can be blended with uncured virgin rubber and thermoplastic polymers to form thermoplastic dynamic vulcanizates (TDVs). TDVs combine the beneficial (re)processability of thermoplastics and the elastic properties of rubbers. Our current work focuses on the development of polypropylene (PP)-based TDVs with the use of a tire model rubber (MR) composed of natural rubber (NR) and styrene-butadiene rubber (SBR) in a ratio of 70/30. The research target was the partial substitution of the above fresh MR by microwave devulcanized crumb rubber (dCR). TDVs were produced by continuous extrusion, and the effects of composition (PP/MR/dCR = 40/60/0…50/35/15) and processing parameters (different screw configurations, temperature profiles, the feeding method of PP) were investigated. Results showed that the fresh rubber compound can be replaced up to 10 wt % without compromising the mechanical properties of the resulting TDV.


Sign in / Sign up

Export Citation Format

Share Document