Effect of Cooling Rate on Microstructure of Rejuvenated Fe-Ni Based Superalloys

2020 ◽  
Vol 856 ◽  
pp. 76-84
Author(s):  
Kittawat Srimark ◽  
Panyawat Wangyao ◽  
Tanaporn Rojhirunsakool

Fe-Ni based superalloys have been widely used in land-base gas turbine application. The turbine blade was in service for 50,000 h at high temperature and stresses. When subjected to long-term exposure at high temperature, the microstructure lost its best mechanical properties due to the microstructural instability. The aim of this research is to understand the effect of cooling rate on gamma (γ) grain size and gamma prime (γ’) particle size, morphology, and its volume fraction in rejuvenated Fe-Ni based superalloys. The alloys were solutionized above the γ’ solvus temperature at 1125 °C for 2 h for homogenization and cooling to room temperature at different cooling rates. The alloys were experienced with furnace cooling, air cooling, oil quenching, and water quenching. Microstructural analyses were investigated. Grain size, morphology, volume fraction of γ’ precipitates were investigated. Preliminary mechanical properties such as microhardness was conducted.

Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


1991 ◽  
Vol 227 ◽  
Author(s):  
M. Haider ◽  
E. Chenevey ◽  
R. H. Vora ◽  
W. Cooper ◽  
M. Glick ◽  
...  

ABSTRACTTrifluoromethyl group-containing polyimides not only show extraordinary electrical properties, but they also exhibit excellent long-term thermo-oxidative stability. Among the most thermomechanically stable structural polyimides are those from 6F dianhydride (6FDA) and 6F diamines. The effects of substituting non-fluorine containing monomers such as BTDA, mPDA and 4,4′-DADPS for the hexafluoroisopropylidene monomers on the dielectric, thermo-oxidative, thermal and mechanical properties of the copolymers were studied.


Author(s):  
Yangping Li ◽  
Yangyi Liu ◽  
Sihua Luo ◽  
Zi Wang ◽  
Ke Wang ◽  
...  

Abstract The attractive mechanical properties of nickel-based superalloys primarily arise from an assembly of γ′ precipitates with desirable size, volume fraction, morphology and spatial distribution. In addition, the solutioning cooling rate after super solvus heat treatment is critical for controlling the features of γ′ precipitates. However, the correlation between these multidimensional parameters and mechanical hardness has not been well established to date. Scanning electron microscope (SEM) images with different γ′ precipitates were investigated in this study, and artificial neural network (ANN) method was used to build a microstructure-mechanical property model. The critical step in this work is to extract different microstructural features from hundreds of SEM images. In order to improve the accuracy of prediction, the cooling rate was also considered as the input. In this work, the methodology was proved to be capable of bridging microstructural features and mechanical properties under the inspiration of material genome spirit.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4441-4448
Author(s):  
Ping Xu ◽  
Dong Han ◽  
Jian-Xin Yu ◽  
Yu-Hao Cui ◽  
Min-Xia Zhang

The aim of the present paper is to study the mechanical properties of aluminate cement mortar mixed with different chopped fibers under high temperature. The specimens with a size of 40 mm ? 40 mm ? 160 mm is treated at various tempera?tures of 25?C, 200?C, 400?C, 600?C, and 800?C. The compressive and flexural strength of the aluminate cement mortar and its micro-structures are tested. The results show that the chopped steel fibers and basalt fibers are effective in improv?ing the high temperature mechanical properties of aluminate cement mortar. When the volume fraction of chopped steel fibers is 2%, the compressive strength and flexural strength of the test block treated at the temperature of 800?C increase by 18.3% and 128.6%, respectively.


2013 ◽  
Vol 275-277 ◽  
pp. 2107-2111
Author(s):  
Qiu Lin Zou ◽  
Jun Li ◽  
Zhen Yu Lai

Barite concrete with density grade of 3 and strength grade of C30 was prepared by mixing with different fineness of fly ash. The workability, mechanical properties and long-term high temperature performance of the prepared barite concrete were researched. Results show that the workability of barite concrete is improved by mixing with fly ash, and no segregation of mixture has been observed. The apparent density and 3d, 28d compressive strength of barite concrete are decreased obviously after mixing with fly ash. But with the increasing of the fineness of fly ash, the apparent density and 3d, 28d compressive strength of barite concrete have a slight increase. High temperature residual compressive strength is decreased with the increasing of temperature. The cycle times of heat treatment at 400°C only has a little effect on residual compressive strength of barite concrete.


2021 ◽  
Vol 63 (2) ◽  
pp. 105-112
Author(s):  
Chuleeporn Paa-rai ◽  
Gobboon Lothongkum ◽  
Panyawat Wangyao

Abstract IN-738 turbine blade samples, deteriorated after long term service at high temperatures, were solution heat-treated at two temperatures, 1398 K and 1473 K, for 7.2 ks. Subsequently, the samples were cooled down in different atmospheres, in air and in furnace, for the purpose of studying the effects of different cooling media (rates) on the restored microstructures. Following this, the samples were aged at 1118 K for 43.2 ks and 86.4 ks in order to determine the characteristic of re-precipitated gamma prime particles. A scanning electron microscope (SEM) and ImageJ analysis software were used. The results show that the cooling in air provided gamma prime particles re-precipitating in spherical shape while the cooling in a furnace resulted in coarse gamma prime particles re-precipitating in irregular shape. The samples solutionized at 1398 K for 7.2 ks cooled down in air and then aging at 1118 K provided bimodal microstructure, while the sample solutionized at 1473 K for 7.2 ks, followed by air cooling and aging at 1118 K generated unimodal γ’ precipitation in spherical shape. Cooling in a furnace provides coarse γ’ recipitated particles in more irregular shape for the both solutionizing temperatures studied here. Cooling in a furnace provides coarse γ’ precipitated particles in more irregular shape for the both solutionizing temperatures studied here.


2014 ◽  
Vol 1004-1005 ◽  
pp. 123-126 ◽  
Author(s):  
Jian Yin ◽  
Xiu Jun Ma ◽  
Jun Ping Yao ◽  
Zhi Jian Zhou

Effect of pulsed magnetic field treatment on the microstructure and mechanical properties of Mg97Y2Zn1 alloy has been investigated. When the pulsed magnetic field is applied on the alloy in semi-solid state, the α-Mg was modified from developed dendrite to fine rosette, resulting in a refined solidification microstructure with the grain size decreased from 4 mm to 0.5 mm. The volume fraction of the second phase ( X phase) increased by about 10 %. The yield strength, fracture strength and plasticity were improved by 21 MPa, 38 MPa and 2.4 %, respectively. The improvement of mechanical properties was attributed to the refined grain size and increased volume fraction of X phase.


2014 ◽  
Vol 224 ◽  
pp. 3-8 ◽  
Author(s):  
Sebastian Kamiński ◽  
Marcel Szymaniec ◽  
Tadeusz Łagoda

In this work an investigation of internal structure influence on mechanical and fatigue properties of ferritic-pearlitic steels is shown. Ferrite grain size and phase volume fraction of three grades of structural steel with similar chemical composition, but different mechanical properties, were examined. Afterwards, samples of the materials were subjected to cyclic bending tests. The results and conclusions are presented in this paper


Sign in / Sign up

Export Citation Format

Share Document