Utilization of Mosul City Demolition Waste to Improve some Soil Engineering Properties

2020 ◽  
Vol 857 ◽  
pp. 374-382
Author(s):  
Omar K. Mohialdeen ◽  
Suhail I.A. Khattab ◽  
Kossay K. Al-Ahmady

The present research has been conducted to trace the various effects of Mosul city demolition waste materials (DMs), on the geotechnical properties of clay. The properties of the samples have already been investigated and evaluated. Moreover, cement has been added to upgrade these properties. Finally, the fine demolition has been added to a highly expansive soil selected from the site of the University of Mosul to reduce the swelling potential. In fact, the experimental work includes: The Abrasion, index and compaction properties, swelling and strength of stabilized and treated expansive soil. The laboratory tests include the testing of consistency limits, unconfined compressive strength (UCS), compaction (standard and modified), swelling, consolidation, and Abrasion test by Los Angeles Machine. The Results show that, increasing the old and new demolition (OD and ND) percentages lead to a decrease of liquid limit and plasticity index of clay, respectively. The increase in maximum γdry for the clay has been noticed when the OD and ND content has been added from 5 to 25%. A reduction of optimum water content (opt) for clay was optimized also by increasing the demolitions percentage to 25%. Also, the UCS strength values of the clay have been increased by increasing the demolition materials (DMs) percentage from 5 to 25%. The odometer characteristics, including the swelling and consolidation of DMs-clay mixtures, were controlled mainly by the type of the demolition. The final result indicates that the presence of old and new demolition waste could improve the clay engineering properties of the stabilized soil. Untreated and cement treated (OD) and (ND) materials could be successfully used as a base or sub-base for road.

2014 ◽  
Vol 587-589 ◽  
pp. 1328-1331
Author(s):  
Achmad Fauzi ◽  
Zuraidah Djauhari ◽  
Usama Juniansyah Fauzi

In general, clayey soil was used as material embankment for increasing road way level before road structure being constructed. Some types of clay are expansive soil, its have been contributing to pavement failures and subsequently causing increased annual maintenance expenditure of the road. The pavements design/redesign methods are found to be the primary cause of these failures. Thus, it is quite important to propose the Kuantan clay engineering properties chart for design criteria that can improve the embankment performance. Thus, it is quite important to investigate the Kuantan clay properties so that can improve the embankment performance. This paper was evaluated and utilized of the engineering properties of Kuantan Clayey as material embankment for roadway. The research were conducted soil engineering properties, standard compaction, four days soaked California Bearing Ratio (CBR) test to ten clayey samples from various sites in Kuantan. The 4 days soaked CBR of clayey samples were prepared at optimum water content. The chemical element was investigated by Integrated Electron Microscope and Energy-Dispersive X-Ray Spectroscopy (SEM-EDS) and linear regression analysis were used to anlyzing relation among engineering properties variables.


2021 ◽  
Vol 6 (2) ◽  
pp. 044-050
Author(s):  
Tsion Mindaye ◽  
Emer Tucay Quezon ◽  
Temesgen Ayna

Expansive soil swells when it is wet, and it will shrink when it dries. Due to this behavior of the soil, the strength and other properties of soil are inferior. To improve its properties, it is necessary to stabilize the soil with different stabilizers. Soil stabilization is a process to treat the soil to maintain, alter, or improve expansive soil performance. In this study, the potential of 'Fino' as stabilizing additive to expansive soil was investigated for the improving engineering properties of expansive soil to be used as subgrade material. The evaluation involved the determination of the Free Swell test, CBR test, Atterberg's limits, and the Proctor test of expansive soil in its natural state as well as when mixed with varying proportions of 'Fino.' The practices were performed on six proportions 5%, 10%, 15%, 20%, 25% and 30 % with expansive soil. The research result indicated a considerable reduction in Swelling, and the Maximum dry Density of soil was improved. Optimum moisture content decreased in increasing 'Fino.' At 30% of 'Fino,' the CBR values of expansive soil increased from 1.06% to 5.94%, Liquid Limit decreased from 95.2% to 29.4%, plasticity index decreased from 57.24% to 17.82% and the degree of expansion of the natural subgrade soil has reduced from "very high to medium." Hence, it is concluded that the 'Fino' at 30% has shown significant improvement in the expansive soil's engineering properties meeting the ERA and AASHTO Standard specifications requirements for road subgrade material.


Author(s):  
E. Ramanjaneya Raju ◽  
B. R. Phanikumar ◽  
M. Heeralal

This note presents the effect of lime, cement, fly ash and ground granulated blast furnace slag (GGBS) on free swell index (FSI), liquid limit (LL), plasticity index (PI), compaction characteristics, hydraulic conductivity (k) and strength characteristics of an expansive soil. The effect of the above chemicals on California bearing ratio (CBR) was also presented. Lime content was varied as 0%, 1%, 2%, 4% and 6% and the amounts of other additives were varied as 0%, 5%, 10%, 15% and 20% by dry weight of the soil. FSI, LL and PI decreased significantly with increasing additive contents. Compaction characteristics also improved with increasing additive contents. Strength characteristics showed improvement at higher additive contents especially at higher curing periods. CBR (determined in soaked condition) also increased significantly with increasing additive contents.


2018 ◽  
Vol 7 (2.1) ◽  
pp. 24
Author(s):  
Sajja Satish ◽  
Shyam Prakash Koganti ◽  
Kommineni Hemantha Raja ◽  
Kaza Raaga Sai

Expansive soil (Black cotton soil) is very weak and does not have enough stability for any type of construction work. To make the subgrade soil stable, by improving its engineering properties is very essential. In the present work, stabilization of subgrade soil by using Sand and Cement varying percentage of cement as 2%, 3%, 5% and constant percentage of sand by weight of soil, Rice Husk of 5%, 7%, 10%, and Lime is used to enhance the strength of subgrade soil. The purpose of this study is to determine the optimum dose of the stabilizer, which improves the strength and bearing capacity of soil less which is suitable for pavement structure. To evaluate the strength of soil, various tests have been performed such as Sieve analysis, Liquid limit, Plastic limit, Specific gravity, Compaction (OMC, MDD) and CBR test in the laboratory. The result shows that the use of the above materials in combination increases the California Bearing Ratio values (CBR). By using the CBR value the design of pavements to carry traffic in the range of 1 to 10 msa and 10 – 150 msa is calculated as per IRC: 37 – 2001.


2008 ◽  
Vol 45 (6) ◽  
pp. 877-887 ◽  
Author(s):  
Osman Sivrikaya ◽  
Ergun Togrol ◽  
Cafer Kayadelen

For successful designs of geotechnical structures, rational determination of the engineering properties of soils is an important process. In this context, compaction parameters, maximum dry unit weight (γdmax), and optimum water content (wopt) are required to be determined at various compaction energies. This paper proposes correlation equations that relate γdmax and wopt obtained from standard Proctor (SP) and modified Proctor (MP) tests to the index properties. To develop accurate relations, the data collected from the literature and the authors’ own database have been used. It has been found that while wopt has the best correlation with plastic limit (wp), γdmax can be estimated more accurately from wopt than it can from wp. In addition, the empirical methods including compaction energy (E) are described for estimating wopt and γdmax of fine-grained soils. The variables of the developed models for wopt and γdmax are wp, E, and wopt. It has been shown that the proposed correlations including the compaction energy will be useful for a preliminary design of a project where there is a financial constraint and limited time.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 472 ◽  
Author(s):  
Asst. Prof. Dr. Khawla H. H. Shubber ◽  
Eng. Ali S. M. Alkizwini

Waste asphalt concrete (WAC) is one of main current sustainable problems facing accumulation in high quantities as a result of the highways failure, maintenance and reconstructions. On the other hand, presence of large amounts of poorly sand graded (PSG) soil near rivers, which are not suitable in case of using it as subgrade soil. So, present research focusing on study the effect of adding WAC on the properties of PSG soil. Modified Procter test, California Bearing Ratio test (CBR), Direct Shear test were depend on evaluating the stabilized soil properties (i.e. dry density, optimum water content, CBR, and direct shear).  PSG river soil used as subgrade soil in this research brought from sides of Sadit AL- Handayi in Babylon Governorate located in middle west of Iraq, about 60 km south west of Baghdad, capital of Iraq. Percent of adding are (12, 24, 36, and 48)% by weight. Results showed that the adding of WAC increase the dry density in different rate. While the optimum water content decrease with increasing WAC added. Direct shear of stabilized soil increase while angle of internal friction decrease with increasing of added WAC. CBR values increase with increasing WAC added.  


Author(s):  
Ayobami Adebola Busari ◽  
Isaac I. Akinwumi ◽  
Paul O. Awoyera ◽  
O.M. Olofinnade ◽  
T.I. Tenebe ◽  
...  

This experimental research assessed the engineering and geotechnical properties of Aluminum dross (ALDR). Glumly, this solid waste is usually open dumped with detrimental effect on the environment. In a bid to reduce solid waste in the environment and also improve pavement interlayer properties, this research utilized ALDR as a stabilizer for tropical lateritic soil. The lateritic soil was stabilized with the addition of this solid waste at 2% intervals from 2% to 16%. Response surface analysis was used in optimizing the strength and consistency of the stabilized soil sample. The addition of this non-conventional stabilizer helped in modifying the engineering properties of the soil sample, this had indications on the atterberg limit as the liquid limit, and the plasticity index increased from 43% to 54.61% and 28.02%- 40.8% respectively, while the plasticity index reduced from 15.1% - 13.8% signifying soil improvement. The load-bearing capacity of the sample increased from 51.22% to 62.41%. Additionally, the unconfined test showed that addition of ALDR residue improved the consistency of the stabilized soil sample. From the model equation, a positive relationship exists between CBR and UCS. R2value of 0.81 showed the robustness of the model developed. The research showed that aluminum dross is a suitable material for improving the engineering properties of the tropical lateritic soil towards a sustainable road construction.


2021 ◽  
Author(s):  
Emer Tucay Quezon ◽  
Tsion Mindaye

Expansive soil swells when it is wet, and it will shrink when it dries. Due to this behavior of the soil, the strength and other properties of soil are inferior. To improve its properties, it is necessary to stabilize the soil with different stabilizers. Soil stabilization is a process to treat the soil to maintain, alter, or improve expansive soil performance. In this study, the potential of 'Fino' as stabilizing additive to expansive soil was investigated for the improving engineering properties of expansive soil to be used as subgrade material. The evaluation involved the determination of the Free Swell test, CBR test, Atterberg's limits, and the Proctor test of expansive soil in its natural state as well as when mixed with varying proportions of 'Fino.' The practices were performed on six proportions 5%, 10%, 15%, 20%, 25% and 30 % with expansive soil. The research result indicated a considerable reduction in Swelling, and the Maximum dry Density of soil was improved. Optimum moisture content decreased in increasing 'Fino.' At 30% of 'Fino,' the CBR values of expansive soil increased from 1.06% to 5.94%, Liquid Limit decreased from 95.2% to 29.4%, plasticity index decreased from 57.24% to 17.82% and the degree of expansion of the natural subgrade soil has reduced from "very high to medium." Hence, it is concluded that the 'Fino' at 30% has shown significant improvement in the expansive soil's engineering properties meeting the ERA and AASHTO Standard specifications requirements for road subgrade material.


Lateritic soils at Otun Ekiti, Ekiti state, southwestern Nigeria were investigated with respect to their geotechnical properties and their suitability for subgrade and sub – base construction materials. Four disturbed lateritic soil samples (sample A, B, C and D) were selected for the various laboratory techniques. The grain size analyses, the specific gravity tests, the atterberg limit tests, compaction, California bearing ratio and shear box tests were carried out on the samples. The grain size analysis shows that sample A is gravelly silt-clayey sand. Sample B is silt – clayey gravel composition. Sample C is gravelly silt-clayey while Sample D is silt-clayey gravel. Atterberg consistency limit test indicate that sample A has 30.0%, liquid limit 19.5% plastic limit, 10.5% plasticity index, 9.1% shrinkage limit. Sample B has liquid limit of 27.0%, 16.2% plastic limit, 10.8% plasticity index and 7.4% shrinkage limit. Sample C has a liquid limit of 32.4%, plastic limit of 15.6%. It has a plastic index of 16.8%, Shrinkage limit of 9.7% while Sample D has a liquid limit of 36.2%, plastic limit of 17.7%. It has a plastic index of 18.5% and 11.1% as shrinkage limit. Thus, the soil is classified to be intermediate plasticity which can be used for sub – grade and sub – base materials. The soil samples are above the activity (A) line in the zone of intermediate plasticity (CL) which suggests that they are inorganic soils. Based on engineering use chart, the workability as construction engineering is good to fair particularly as erosion resistance in canal construction. However, the high shrinkage limit may also reduce erosion in this area because of cohesion of the plastic clay material. The California Bearing Ratio (CBR) values are within 2 – 3% (mean = 2.75%) and 2 - 4% (mean = 2.75%) in sample A and sample B respectively while California Bearing Ratio (CBR) of 2 - 4% (mean = 2.75%) and 2 – 3% (mean = 2.75%) in sample C and sample D respectively. This implies that the materials can be used as a sub-grade to base course material for support of flexible pavements. The compaction tests for the optimum water content for sample A is 15.0% and 13.0% for standard and modified proctor respectively. The standard and modified proctor for sample B is 15.0% and 14.0% respectively. The compaction tests for the optimum water content for sample C and D is 15.0% and 14.0% for standard and modified proctor respectively. The compaction tests for Sample A indicate a higher fine fraction and thus a higher optimum moisture content while sample B, C and D has higher coarse fraction with lower optimum moisture content. The cohesion falls within 70-90Kpa (mean = 79Kpa) and the angle of internal friction ranges from 260 - 320 with mean of 280 for standard and modified compaction energies respectively. The results obtained from geotechnical analysis suggest that the soil is good to fair as erosion resistance in canal construction because of its high bearing capacity and it can also be used as sub – grade and base course in road construction. Keywords: Lateritic soil, Construction, Erosional and Geotechnical.


2022 ◽  
Vol 961 (1) ◽  
pp. 012030
Author(s):  
Teba A Abd ◽  
Mohammed Y Fattah ◽  
Mohammed F Aswad

Abstract The application of appropriate chemicals is a widely used strategy for soil stabilization. The drive of this study is to determine the possibility of using the biopolymer carboxymethyl cellulose as an environmentally acceptable soil stabilizer. In this work, Atterberge limits tests, specific gravity, compaction, and consolidation tests were used to determine the engineering parameters of soils treated with varying amounts of biopolymer. Additionally, changes in the morphological properties of the soft soils were evaluated using scanning electron microscopy (SEM). It was estimated that as the soil’s biopolymer content increases, the specific gravity drops down, though the optimum water content (OMC) is extended. The outcomes showed diverse effects on Atterberg’s limits by cumulative the liquid limit(LL) and plasticity index (PI) though decreasing the plastic limit as the bio-polymer content increases. By the addition in polymer gratified, the combination boundaries (Solidity index Cc and recompression index Cr) decline.


Sign in / Sign up

Export Citation Format

Share Document