Effect of Raw Materials Formula on Performance of Steel Slag Cement

2020 ◽  
Vol 861 ◽  
pp. 446-451
Author(s):  
Liang Song Li ◽  
Min Zhu ◽  
Xiang Li ◽  
Qiong Wang ◽  
Yao Xiong ◽  
...  

At present, the commonly used cement has low tensile strength and low flexural strength, which is a fatal defect of cement materials. It is extremely urgent to conduct research on this shortcoming of cement. In addition, the steel industry steel mill produces a large amount of waste steel slag. The chemical composition of steel slag is similar to that of cement. This experiment makes full use of waste steel slag as raw material to prepare cement to improve the performance of cement materials. Using limestone, sandstone, shale, steel slag and river sand as the main raw materials, through the powder preparation, mixing, calcination, grinding, molding process and performance analysis of raw materials. After the calcination, the cement clinker in the form of a block becomes higher in hardness as the steel slag is incorporated. The higher the calcination temperature, the smaller the steel slag incorporation maximum. When the calcined at 1150 °C is mixed with 17.5% steel slag, a cement with better performance can be obtained.

2015 ◽  
Vol 10 (2) ◽  
pp. 81-92 ◽  
Author(s):  
Július Strigáč

Abstract The article deals with the study of the effects of alternative fuels and raw materials on the cement clinker quality. The clinker quality was expressed by the content of two principal minerals alite C3S and belite C2S. The additions of alternative fuels ashes and raw materials, in principle, always increased the belite content and conversely reduced the amount of alite. The alternative fuels with high ash content were used such as the meat-bone meal, sewage sludge from sewage treatment plants and paper sludge and the used alternative raw materials were metallurgical slags - granulated blastfurnace slag, air cooled blastfurnace slag and demetallized steel slag, fluidized bed combustion fly ash and waste glass. Meat-bone meal, sewage sludge from sewage treatment plants and paper sludge were evaluated as moderately suitable alternative fuels which can be added in the amounts of 2.8 wt. % addition of meat-bone meals ash, 3.64 wt. % addition of sewage sludge ash and 3.8 wt. % addition of paper sludge ash to the cement raw mixture. Demetallised steel slag is suitable for production of special sulphate resistant cement clinker for CEM I –SR cement with addition up to 5 wt. %. Granulated blastfurnace slag is a suitable alternative raw material with addition 4 wt. %. Air cooled blastfurnace slag is a suitable alternative raw material with addition 4.2 wt. %. Waste glass is not very appropriate alternative raw material with addition only 1.16 wt. %. Fluidized bed combustion fly ash appears not to be equally appropriate alternative raw material for cement clinker burning with less potential utilization in the cement industry and with addition 3.41 wt. %, which forms undesired anhydrite CaSO4 in the cement clinker.


2020 ◽  
Vol 10 (1) ◽  
pp. 49
Author(s):  
Suharto Suharto ◽  
Muhammad Amin ◽  
Muhammad Al Muttaqii ◽  
Syafriadi Syafriadi ◽  
Kiki Nurwanti

Experimental study on the use of basalt stone originated from Lampung has been conducted to evaluate its potential for a partial substitute of raw material in production of cement clinker. The basalt stone contains minerals of anorthite, augite, and albite phases that are required for clinker formation. In this study, the main raw materials were 80% limestone, 10% silica sand, 9% clay and 1% iron sand. The raw material in these experiments were mixtures 90% or 80% of the main raw material and 10% or 20% of basalt stone. The effect of adding coal to raw materials was also studied to see the possibility of an increase in clinkerization temperature inside the raw material mixture, and at the same time to see the effect of coal ash on clinker composition. Clinker obtained from heating of raw materials at a temperature of 1100oC had LSF of 94.1% and 95.1% (heating time of 1 and 3 hours). If heating is carried out at 1200oC, the clinker had LSF of 97.7% and 98.0% (heating time of 2 and 3 hours, respectively). Depending on the temperature and duration of heating, the clinker mostly had SM in the range of 2.18-2.40% , and AM in the range of 0,78-1.80%. Characterization using XRD showed that the clinker consisted of larnite and gehlenite phases, and dominated by CaO.Batu basalt Lampung telah diuji potensinya sebagai pengganti sebagian bahan baku utama pembuatan klinker semen. Batu basalt tersebut memiliki mineral-mineral dalam fase anorthite, augite, dan albite yang diperlukan pada pembentukan klinker. Pada penelitian ini, bahan baku utama adalah batu kapur 80%, pasir silika 10%, tanah liat 9% dan pasir besi 1%. Campuran bahan baku klinker adalah 90% atau 80% bahan baku utama dan 10% atau 20% batu basalt. Efek penambahan batubara ke dalam bahan baku klinker juga dipelajari untuk melihat kemungkinan kenaikan temperatur klinkerisasi di dalam campuran bahan baku, dan sekaligus untuk melihat efek abu batubara terhadap komposisi klinker. Klinker hasil pemanasan bahan baku pada temperatur 1100oC memiliki LSF 94,1% dan 95,1% (lama pemanasan 1 dan 3 jam). Jika pemanasan dilakukan pada 1200oC, klinker memilik LSF 97,7% dan 98,00% (lama pemanasan 2 dan 3 jam). Tergantung pada temperatur dan lama pemanasan, klinker hasil percobaan ini umumnya memiliki SM 2,18-2,40%, dan AM antara 0,78-1,80%. Karakterisasi dengan XRD menunjukkan bahwa klinker terdiri dari fase larnite dan gehlenite, dan didominasi CaO.


2014 ◽  
Vol 602-603 ◽  
pp. 640-643
Author(s):  
Yu Fei Chen ◽  
Yan Gai Liu ◽  
Xiao Wen Wu ◽  
Zhao Hui Huang ◽  
Ming Hao Fang

Mica glass-ceramics can be applied in all kinds of electrical equipment, locomotive internal circuits in high-speed rail, ordinary electric locomotive and subway locomotive. In this study, mica glass-ceramics were prepared by sintering process using flake mica and waste glass as the main raw material with low cost. Different mica glass-ceramic samples were fabricated by changing the formula of raw materials, molding process and sintering temperature. X-ray diffraction, scanning electron microscopy, three-point bending test, and balanced-bridge technique were applied to investigate the phase, microstructure, mechanical and electrical resistivities of the samples, respectively. The results show that the optimum sintering temperature is 900 to 1000 °C holding for two hours, the desirable ratio is 70 wt% of mica powder while 30 wt% of glass powder. In that condition the sample could be less porosity, high flexural strength (63.3 MPa) and eligible electrical resistivity (0.4×1013 Ω·cm).


2015 ◽  
Vol 814 ◽  
pp. 564-568 ◽  
Author(s):  
Ya Li Wang ◽  
Su Ping Cui ◽  
Gui Ping Tian ◽  
Ming Zhang Lan ◽  
Zhi Hong Wang

When steel slag, a by-product of steel making in impurity catching process, is added, the forming process of cement clinker and the major reactions in that process are changed. Since there are dramatic differences between the chemical components and mineral compositions of steel slag and that of natural cement raw materials, the empirical equation for the calculating forming heats of cement clinker made of limestone and clay is no longer applied for those made of steel slag. In this paper, the empirical equation for forming heat calculation of steel slag added cement clinker was promoted, and testified by acid dissolution experiments. Results showed that the change of raw materials had great influence on the forming heat of cement clinker. When the traditional raw materials were replaced with steel slag, the forming heat of cement clinker reduced. Calculating the forming heat by our revised empirical equation can help reduce errors and bring great convenience for the calculation and evaluation of heat efficiency. This research provides theoretical underpinning for the study and calculation of forming heat of steel slag added cement clinker.


Author(s):  
K. C. Manjunatha ◽  
H. S. Mohana ◽  
P. A. Vijaya

Intelligent process control technology in various manufacturing industries is important. Vision-based non-magnetic object detection on moving conveyor in the steel industry will play a vital role for intelligent processes and raw material handling. This chapter presents an approach for a vision-based system that performs the detection of non-magnetic objects on raw material moving conveyor in a secondary steel-making industry. At single camera level, a vision-based differential algorithm is applied to recognize an object. Image pixels-based differential techniques, optical flow, and motion-based segmentations are used for traffic parameters extraction; the proposed approach extends those futures into industrial applications. The authors implement a smart control system, since they can save the energy and control unnecessary breakdowns in a robust manner. The technique developed for non-magnetic object detection has a single static background. Establishing background and background subtraction from continuous video input frames forms the basis. Detection of non-magnetic materials, which are moving with raw materials, and taking immediate action at the same stage as the material handling system will avoid the breakdowns or power wastage. The authors achieve accuracy up to 95% with the computational time of not more than 1.5 seconds for complete system execution.


2018 ◽  
pp. 1820-1837
Author(s):  
K. C. Manjunatha ◽  
H. S. Mohana ◽  
P. A. Vijaya

Intelligent process control technology in various manufacturing industries is important. Vision-based non-magnetic object detection on moving conveyor in the steel industry will play a vital role for intelligent processes and raw material handling. This chapter presents an approach for a vision-based system that performs the detection of non-magnetic objects on raw material moving conveyor in a secondary steel-making industry. At single camera level, a vision-based differential algorithm is applied to recognize an object. Image pixels-based differential techniques, optical flow, and motion-based segmentations are used for traffic parameters extraction; the proposed approach extends those futures into industrial applications. The authors implement a smart control system, since they can save the energy and control unnecessary breakdowns in a robust manner. The technique developed for non-magnetic object detection has a single static background. Establishing background and background subtraction from continuous video input frames forms the basis. Detection of non-magnetic materials, which are moving with raw materials, and taking immediate action at the same stage as the material handling system will avoid the breakdowns or power wastage. The authors achieve accuracy up to 95% with the computational time of not more than 1.5 seconds for complete system execution.


2019 ◽  
Vol 814 ◽  
pp. 413-418
Author(s):  
Fang Wang ◽  
Ming Han Xu ◽  
Rui Hua Wang ◽  
Chao Yang ◽  
Ai Xia Chen ◽  
...  

The construction industry continues to develop and the requirements for cement performance are getting higher and higher. At the same time, in the steel industry, the discharge of steel slag is also increasing. The effective reuse of steel slag has become a prominent problem in the steel industry. . Therefore, it is envisaged to use steel slag as a raw material for the cement production process to produce cement and to produce high-performance cement. The main raw materials of this experiment are steel slag, limestone, sandstone and shale. Through the cement preparation process, the cement is made, and then the cement is made into concrete to test its performance. This experiment mainly studies the sintering temperature and holding time variable. In the experimental test, the analysis and comparison were carried out in five aspects of the degree of macroscopic cracking, particle size, density, microstructure and composition. In the comparison experiment of sintering temperature, with the increase of temperature, the flexural and compressive properties of cement gradually increased. In this test, 1200 °C is the most suitable temperature for the performance of the cement. Through the experimental comparison of different holding time, it is known that with the prolonging of the holding time, the microstructure and actual performance of the cement are continuously enhanced. Comprehensive consideration: the ratio of steel slag in cement ratio is 10%, sintering temperature is 1200 °C, and heat preservation is 2h. The steel slag cement prepared under this condition has the strongest performance.


2013 ◽  
Vol 389 ◽  
pp. 341-345 ◽  
Author(s):  
Ya Li Wang ◽  
Shi Jie Dong ◽  
Lin Lin Liu ◽  
Su Ping Cui ◽  
Hai Bo Xu

Calcium carbide Slag is one kind of industrial wastes from CaC2 hydrolysis reaction that will cause land pollution. In the research, calcium carbide Slag used as a substitute for limestone to produce cement clinker, which with a high portion of CaO content and then an excellent calcium containing raw material. As a kind of industrial wastes, the properties of Calcium carbide slag differentiate from that of natural limestone. The formation process of clinker minerals was studied by means of XRD. The results indicated that clinker minerals formation is similar to that from use of limestone. The generated clinker has a rational mineral composition and well developed mineral phase structure. But, there are many differences in decomposition temperatures between the calcium containing raw materials. Therefore, the carbide slag can be used as a substitute of limestone raw material to produce cement clinker.


Author(s):  
L.P. Chernyak ◽  
L.I. Melnyk ◽  
N.O. Dorogan ◽  
I.A. Goloukh

This work used a combination of modern physico-chemical research methods with standardized testing of technological and operational properties of raw materials, clinker, cement and compositions with its application. Results over of research of the silicate systems with rice husk and ash-fly as technogenic raw material for making of cement clinker are driven. The features of the chemical-mineralogical composition, phase transformations during burning and astringent properties of material at the use of 42,5-50,5 % industry wastes in composition initial raw material mixtures are shown. The object of the study were raw material mixtures for the production of Portland cement clinker based on the systems of chalk - clay - man-made raw materials and chalk - man-made raw materials. The possibility of replacing exhaustible and non-renewable natural raw materials with a complex of multi-tonnage wastes of agro-industry and heat energy, which meets the objectives of expanding the raw material base of cement production, resource conservation and environmental protection. Peculiarities of phase formation during firing of silicate systems of chalk-polymineral clay and chalk-technogenic raw materials taking into account changes in the quantitative ratio of components, in particular rice husk and ash-removal of thermal power plants are noted.


Author(s):  
L. E. Glagoleva ◽  
N. P. Zatsepilina ◽  
M. V. Kopylov ◽  
S. O. Rodionov

The leading direction in the field of nutrition is the creation of a range of products that contribute to improving health when they are used daily in the diet. The urgency of studying bovine colostrum-colostrum, which is an immune-modeling animal raw material, has been substantiated. Colostrum is a natural source of all the ingredients needed to build immunity. Biologically active substances contained in cow colostrum contribute to: restoration of immunity; restoration of the intestines and stomach; strengthening the nervous system; renewal of brain cells; improving emotional tone and mood; increasing vitality and performance; slowing down the aging process; protection against diseases of the intestines and stomach, cardiovascular system, respiratory tract, diabetes, allergies, osteoporosis and a number of other diseases. Colostrum contains a minimum of 37 immune factors and 8 growth factors that help the body fight disease and promote good health and longevity. The classes of immunoglobulins contained in colostrum, which represent the bulk of whey proteins, have been studied. Colostrum is a limited source of raw materials, its production period is short, there are many opportunities for industrial use, but due to the small amount of raw materials, the market remains undeveloped, with the exception of food additives. Taking into account the extensive therapeutic and medicinal properties of colostrum, its unique composition and properties, its composition and physicochemical properties were investigated, the fractionation parameters were determined using various systems. To process the experimental studies, the STATISTICA 12 software package was used. To obtain the regression equation, the matrix data were processed using the Microsoft Excel 2010 software package. The analysis of the data obtained indicates the possibility and prospects of using colostroma in food production technology.


Sign in / Sign up

Export Citation Format

Share Document