Recombinant Expression and Biochemical Characterization of Levansucrase from Halophilic Bacteria Bacillus licheniformis BK1 and BK2

2021 ◽  
Vol 874 ◽  
pp. 96-106
Author(s):  
Nur Umriani Permatasari ◽  
Enny Ratnaningsih ◽  
Rukman Hertadi

Levansucrase was an extracellular polysacharride (EPS) which has a role in synthesizing levans by transferring fructose moiety from sucrose to acceptor molecules. In the previous study, we have successfully cloned the levansucarese gene from two Bacillus licheniformis strains of BK1 and BK2 labeled as lsbl-bk1 and lsbl-bk2. The present study aims to optimize the expression level of both genes in E. coli expression system and also to obtain the optimum conditions for the recombinant enzymes activity by applying the response surface methodology (RSM). The optimization result found that the highest Lsbl-bk1 production in E. coli expression system was occurred when the recombinant cells grown in the medium containing 0.6% (w/v) NaCl at 42°C, and induced by 0.6 mM IPTG. Different optimum conditions were found for Lsbl-bk2 production. It was achieved when 1.1% (w/v) NaCl added to the production medium and induced by 0.7 mM IPTG at 40°C. RSM optimization result for biochemical characterization of Lsbl-bk1 levansucrase showed the highest specific activity achieved at 56°C and pH 7.5, whereas for the Lsbl-bk2 levansucrase reached the highest specific activity at 50°C and pH 7.5. The addition of Co2+, Ti2+, Mg2+, Ba2+, Zn2+, Fe3+, Ca2+ metal ion to both levansucrases solution did not significantly altered their specific activity, indicating that both levansucrases are not metalo enzymes. Furthermore, the specific activity of levansucrase was also not affected by the addition of 1-25% (w/v) NaCl, suggesting that the variation of ionic strength did not alter the native state of both enzymes. The plot results of levansucrase specific activities toward sucrose concentration showed that both levansucrases follow Michaelis-Menten profile with kcat/KM values ​​about 3.8 and 3.6 s-1/mM respectively. These data indicated that the recombinant levansucrases from halophilic bacteria B. licheniformis BK1 and BK2 are a non metaloenzyme with high affinity and binding rate to sucrose substrate, in which the catalytic efficiency on hydrolysis reactions is relatively low.

Author(s):  
Monika Wicka-Grochocka ◽  
Hubert Cieśliński ◽  
Marta Wanarska

Two recombinant Komagataella phaffii (formerly Pichia pastoris) yeast strains for production of two sequential variants of EstS9 esterase from psychrotolerant bacterium Pseudomonas sp. S9, i.e. αEstS9N (a two-domain enzyme consisting of a catalytic domain and an autotransporter domain) and αEstS9Δ (a single-domain esterase) were constructed. However, only one of recombinant K. phaffii strains, namely Komagataella phaffii X-33/pPICZαestS9Δ, allowed to successfully produce and secrete recombinant αEstS9Δ enzyme outside of the host cell. The purified αEstS9Δ esterase was active towards short-chain p-nitrophenyl esters (C2–C8), with optimal activity for the acetate (C2) ester. The single-domain αEstS9Δ esterase exhibits the highest activity at 60oC and pH 9.5. In addition, the enzyme retains 90% of its activity after 3 hour incubation at 70–90oC. What should be also noted is that αEstS9Δ esterase produced in the K. phaffii expression system has a much higher specific activity (0.069 U/mg of protein) than the recombinant EstS9Δ esterase produced in an E. coli expression system (0.0025 U/mg of protein) (Wicka et al., 2016, Acta Biochim Pol 63: 117–125. https://doi.org/10.18388/abp.2015_1074).


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 382 ◽  
Author(s):  
Chen-Fu Chung ◽  
Shih-Che Lin ◽  
Tzong-Yuan Juang ◽  
Yung-Chuan Liu

In this study, a surface-display system was applied for the expression of lipase A in an E. coli expression system. Since the target protein was exposed on the cell membrane, the shaking rate during culturing might have increased the oxygen mass transfer rate and the shear stress, both of which would be detrimental to the surface-displayed protein. The shaking rate did indeed have an effect on the properties of the surface-displayed lipase A from Candida antarctica (sdCALA). When cultivated at a shaking rate of less than 50 rpm, the specific activity of sdCALA was low, which was due to the limited amount of dissolved oxygen. When the shaking rate was greater than 100 rpm, the specific activity decreased as a result of shear stress. When cultivating CALA and sdCALA at various temperatures and values of pH, both proteins displayed the same activity profile, with the optimum conditions being 60 °C and pH 6. A kinetic study revealed that the sdCALA cultivated at 100 rpm gave a higher value of νm (0.074 μmol/mL/min) and a lower value of Km (0.360 μmol/mL) relative to those obtained at 200 rpm and relative to those of the free CALA. sdCALA retained over 80% of its activity after treatment at 70 °C for 30 min, but its activity decreased rapidly when the temperature was above 80 °C. The specific activity of sdCALA decreased in the presence of acetonitrile and acetone relative to that of the control (50% ethanol), regardless of the solvent concentration. The highest activity (0.67 U/mL) was obtained when the ethanol concentration was 30%.


1993 ◽  
Vol 295 (3) ◽  
pp. 719-724 ◽  
Author(s):  
A Igout ◽  
J Van Beeumen ◽  
F Frankenne ◽  
M L Scippo ◽  
B Devreese ◽  
...  

The hGH-V (or hGH-2) gene codes for human placental growth hormone (hPGH). Secretion of hPGH is continuous, in contrast with the pulsed secretion of pituitary growth hormone (hGH) which it progressively replaces in the maternal bloodstream. hGH-V cDNA has previously been cloned and isolated. Analysis of its nucleotide sequence has revealed a 191-residue protein, hPGH, differing from hGH at 13 positions. The calculated pI is more basic than that of the pituitary hormone. Here we have inserted hGH-V cDNA into the pIN-III-ompA3 plasmid in order to produce hPGH in its native form in Escherichia coli D1210. Expression of hGH-V cDNA in E. coli is significantly lower than that of hGH cDNA with the same expression system. The hPGH produced in E. coli was purified in quantities sufficient to allow its biochemical and immunochemical characterization. The molecular mass of the protein was determined by electrospray m.s. The determined mass, 22,320 Da, agrees well with the molecular mass calculated from the translated cDNA sequence, assuming the presence of two disulphide bridges. Having established the technique for producing hPGH with a primary structure identical to the natural, non-glycosylated, 22 kDa isoform, we can now plan the full physicochemical and pharmaceutical characterization of this new hormonal entity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peixian Bai ◽  
Liyuan Wang ◽  
Kang Wei ◽  
Li Ruan ◽  
Liyun Wu ◽  
...  

Abstract Background Alanine decarboxylase (AlaDC), specifically present in tea plants, is crucial for theanine biosynthesis. Serine decarboxylase (SDC), found in many plants, is a protein most closely related to AlaDC. To investigate whether the new gene AlaDC originate from gene SDC and to determine the biochemical properties of the two proteins from Camellia sinensis, the sequences of CsAlaDC and CsSDC were analyzed and the two proteins were over-expressed, purified, and characterized. Results The results showed that exon-intron structures of AlaDC and SDC were quite similar and the protein sequences, encoded by the two genes, shared a high similarity of 85.1%, revealing that new gene AlaDC originated from SDC by gene duplication. CsAlaDC and CsSDC catalyzed the decarboxylation of alanine and serine, respectively. CsAlaDC and CsSDC exhibited the optimal activities at 45 °C (pH 8.0) and 40 °C (pH 7.0), respectively. CsAlaDC was stable under 30 °C (pH 7.0) and CsSDC was stable under 40 °C (pH 6.0–8.0). The activities of the two enzymes were greatly enhanced by the presence of pyridoxal-5′-phosphate. The specific activity of CsSDC (30,488 IU/mg) was 8.8-fold higher than that of CsAlaDC (3467 IU/mg). Conclusions Comparing to CsAlaDC, its ancestral enzyme CsSDC exhibited a higher specific activity and a better thermal and pH stability, indicating that CsSDC acquired the optimized function after a longer evolutionary period. The biochemical properties of CsAlaDC might offer reference for theanine industrial production.


Author(s):  
Rahma R. Z. Mahdy ◽  
Shaimaa A. Mo’men ◽  
Marah M. Abd El-Bar ◽  
Emad M. S. Barakat

Abstract Background Insect lipid mobilization and transport are currently under research, especially lipases and lipophorin because of their roles in the production of energy and lipid transport at a flying activity. The present study has been conducted to purify intracellular fat body lipase for the first time, from the last larval instar of Galleria mellonella. Results Purification methods by combination of ammonium sulfate [(NH4)2SO4] precipitation and gel filtration using Sephadex G-100 demonstrated that the amount of protein and the specific activity of fat body lipase were 0.008633 ± 0.000551 mg/ml and 1.5754 ± 0.1042 μmol/min/mg protein, respectively, with a 98.9 fold purity and recovery of 50.81%. Hence, the sephadex G-100 step was more effective in the purification process. SDS-PAGE and zymogram revealed that fat body lipase showed two monomers with molecular weights of 178.8 and 62.6 kDa. Furthermore, biochemical characterization of fat body lipase was carried out through testing its activities against several factors, such as different temperatures, pH ranges, metal ions, and inhibitors ending by determination of their kinetic parameters with the use of p-nitrophenyl butyrate (PNPB) as a substrate. The highest activities of enzyme were determined at the temperature ranges of 35–37 °C and 37–40 °C and pH ranges of 7–9 and 7–10. The partially purified enzyme showed significant stimulation by Ca2+, K+, and Na+ metal ions indicating that fat body lipase is metalloproteinase. Lipase activity was strongly inhibited by some inhibitors; phenylmethylsulfonyl fluoride (PMSF), ethylene-diaminetetractic acid (EDTA), and ethylene glycoltetraacetic acid (EGTA) providing evidence of the presence of serine residue and activation of enzymes by metal ions. Kinetic parameters were 0.316 Umg− 1 Vmax and 301.95 mM Km. Conclusion Considering the purification of fat body lipase from larvae and the usage of some inhibitors especially ion chelating agents, it is suggested to develop a successful control of Galleria mellonella in near future by using lipase inhibitors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masuzu Kikuchi ◽  
Keiichi Kojima ◽  
Shin Nakao ◽  
Susumu Yoshizawa ◽  
Shiho Kawanishi ◽  
...  

AbstractMicrobial rhodopsins are photoswitchable seven-transmembrane proteins that are widely distributed in three domains of life, archaea, bacteria and eukarya. Rhodopsins allow the transport of protons outwardly across the membrane and are indispensable for light-energy conversion in microorganisms. Archaeal and bacterial proton pump rhodopsins have been characterized using an Escherichia coli expression system because that enables the rapid production of large amounts of recombinant proteins, whereas no success has been reported for eukaryotic rhodopsins. Here, we report a phylogenetically distinct eukaryotic rhodopsin from the dinoflagellate Oxyrrhis marina (O. marina rhodopsin-2, OmR2) that can be expressed in E. coli cells. E. coli cells harboring the OmR2 gene showed an outward proton-pumping activity, indicating its functional expression. Spectroscopic characterization of the purified OmR2 protein revealed several features as follows: (1) an absorption maximum at 533 nm with all-trans retinal chromophore, (2) the possession of the deprotonated counterion (pKa = 3.0) of the protonated Schiff base and (3) a rapid photocycle through several distinct photointermediates. Those features are similar to those of known eukaryotic proton pump rhodopsins. Our successful characterization of OmR2 expressed in E. coli cells could build a basis for understanding and utilizing eukaryotic rhodopsins.


2021 ◽  
Author(s):  
Cristina Hernandez Rollan ◽  
Kristoffer Bach Falkenberg ◽  
Maja Rennig ◽  
Andreas Birk Bertelsen ◽  
Morten Norholm

E. coli is a gram-negative bacteria used mainly in academia and in some industrial scenarios, as a protein production workhorse. This is due to its ease of manipulation and the range of genetic tools available. This protocol describes how to express proteins in the periplasm E. coli with the strain BL21 (DE3) using a T7 expression system. Specifically, it describes a series of steps and tips to express "hard-to-express" proteins in E. coli, as for instance, LPMOs. The protocol is adapted from Hemsworth, G. R., Henrissat, B., Davies, G. J., and Walton, P. H. (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat. Chem. Biol.10, 122–126. .


2018 ◽  
Author(s):  
Krithika Rajagopalan ◽  
Jonathan Dworkin

AbstractIn bacteria, signaling phosphorylation is thought to occur primarily on His and Asp residues. However, phosphoproteomic surveys in phylogenetically diverse bacteria over the past decade have identified numerous proteins that are phosphorylated on Ser and/or Thr residues. Consistently, genes encoding Ser/Thr kinases are present in many bacterial genomes such asE. coli,which encodes at least three Ser/Thr kinases. Since Ser/Thr phosphorylation is a stable modification, a dedicated phosphatase is necessary to allow reversible regulation. Ser/Thr phosphatases belonging to several conserved families are found in bacteria. One family of particular interest are Ser/Thr phosphatases which have extensive sequence and structural homology to eukaryotic Ser/Thr PP2C phosphatases. These proteins, called eSTPs (eukaryotic-like Ser/Thr phosphatases), have been identified in a number of bacteria, but not inE. coli.Here, we describe a previously unknown eSTP encoded by anE. coliORF,yegK,and characterize its biochemical properties including its kinetics, substrate specificity and sensitivity to known phosphatase inhibitors. We investigate differences in the activity of this protein in closely relatedE. colistrains. Finally, we demonstrate that this eSTP acts to dephosphorylate a novel Ser/Thr kinase which is encoded in the same operon.ImportanceRegulatory protein phosphorylation is a conserved mechanism of signaling in all biological systems. Recent phosphoproteomic analyses of phylogenetically diverse bacteria including the model Gram-negative bacteriumE. colidemonstrate that many proteins are phosphorylated on serine or threonine residues. In contrast to phosphorylation on histidine or aspartate residues, phosphorylation of serine and threonine residues is stable and requires the action of a partner Ser/Thr phosphatase to remove the modification. Although a number of Ser/Thr kinases have been reported inE. coli, no partner Ser/Thrphosphatases have been identified. Here, we biochemically characterize a novel Ser/Thr phosphatase that acts to dephosphorylate a Ser/Thr kinase that is encoded in the same operon.


2018 ◽  
Vol 43 (6) ◽  
pp. 638-650
Author(s):  
Ruth Ololade Amiola ◽  
Adedeji Nelson Ademakinwa ◽  
Zainab Adenike Ayinla ◽  
Esther Nkechi Ezima ◽  
Femi Kayode Agboola

Abstract Background β-Cyanoalanine synthase plays essential roles in germinating seeds, such as in cyanide homeostasis. Methods β-Cyanoalanine synthase was isolated from sorghum seeds, purified using chromatographic techniques and its biochemical and catalytic properties were determined. Results The purified enzyme had a yield of 61.74% and specific activity of 577.50 nmol H2S/min/mg of protein. The apparent and subunit molecular weight for purified β-cyanoalanine synthase were 58.26±2.41 kDa and 63.4 kDa, respectively. The kinetic parameters with sodium cyanide as substrate were 0.67±0.08 mM, 17.60±0.50 nmol H2S/mL/min, 2.97×10−1 s−1 and 4.43×102 M−1 s−1 for KM, Vmax, kcat and kcat/KM, respectively. With L-cysteine as substrate, the kinetic parameters were 2.64±0.37 mM, 63.41±4.04 nmol H2S/mL/min, 10.71×10−1 s−1 and 4.06×102 M−1 s−1 for KM, Vmax, kcat and kcat/KM, respectively. The optimum temperature and pH for activity were 35°C and 8.5, respectively. The enzyme retained more than half of its activity at 40°C. Inhibitors such as HgCl2, EDTA, glycine and iodoacetamide reduced enzyme activity. Conclusion The biochemical properties of β-cyanoalanine synthase in germinating sorghum seeds highlights its roles in maintaining cyanide homeostasis.


Sign in / Sign up

Export Citation Format

Share Document