Impact of Nanodispersed Diamond Graphite Additive on Metal Cutting Temperature

2021 ◽  
Vol 887 ◽  
pp. 383-388
Author(s):  
E.A. Petrovsky ◽  
K.A. Bashmur ◽  
Vadim S. Tynchenko

The present study describes the impact of cutting speed and various lubricant-cooling process agents on the temperature of alloy turning. The research was conducted for NiCr20TiAl and N07750 nickel alloys with the help of HG30 and HS123 carbide-tipped cutting tools. New lubricant-cooling process agents with nanodispersed diamond graphite additives are studied. The optimal composition of the diamond graphite additives is revealed when cutting these alloys. It is demonstrated on the basis of tests the positive effect of diamond graphite agents on the quantitative changes in measured cutting temperatures. In doing so, the cutting speed and the lubricant-cooling agents applied to the cutting zone have little impact on the nature of temperature patterns.

Author(s):  
Mitsuru Hasegawa ◽  
Tatsuya Sugihara

Abstract In cutting of Ti-6Al-4V alloy, the cutting speed is limited since a high cutting temperature leads to severe tool wear and short tool life, resulting in poor production efficiency. On the other hand, some recent literature has reported that various beneficial effects can be provided by forming micro-textures on the tool surface in the metal cutting process. In this study, in order to achieve high-performance machining of Ti-6Al-4V, we first investigated the mechanism of the tool failure process for a cemented carbide cutting tool in high-speed turning of Ti-6Al-4V. Based on the results, cutting tools with micro textured surfaces were developed under the consideration of a cutting fluid action. A series of experiments showed that the textured rake face successfully decreases the cutting temperature, resulting in a significant suppression of both crater wear and flank wear. In addition, the temperature zone where the texture tool is effective in terms of the tool life in the Ti-6Al-4V cutting was discussed.


2021 ◽  
Vol 887 ◽  
pp. 319-324
Author(s):  
E.A. Petrovsky ◽  
K.A. Bashmur ◽  
Vadim S. Tynchenko

The present study describes the impact of various protective process agents on chip forming processes. The research was conducted on NiCr20TiAl and 34NiCrMoV14-5 nickel-chromium alloys. New lubricant-cooling process agents with carbon nanopowder additives are studied. The optimal composition of the nanopowder additive and its effect during alloy cutting is examined. Experiments reveal the dependence of shrinkage ratio on cutting speed and various protective process agents. The values of H50 microhardness are also defined when cutting these alloys using protective process agents. Experimental studies found the positive effect of developed agents with nanopowder additives on the processes of NiCr20TiAl and 34NiCrMoV14-5 alloys chip formation.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 447 ◽  
Author(s):  
Sergey Grigoriev ◽  
Alexey Vereschaka ◽  
Alexander Metel ◽  
Nikolay Sitnikov ◽  
Filipp Milovich ◽  
...  

This paper deals with the Cr-CrN-(Cr0.35Ti0.40Al0.25)N coating. It has a three-layered architecture with a nano-structured wear-resistant layer. The studies involved the investigation into the microstructure (with the use of SEM and TEM), elemental and phase composition (XRD and SAED patterns), wear process pattern in scratch testing, crystal structure, as well as the microhardness of the coating. Cutting tests of tools with the above coating were carried out in dry turning of steel 1045 at cutting speeds of vc = 200, 250, and 300 m·min−1. The comparison included uncoated tools and tools with the commercial TiN and (Ti,Al)N coatings with the same thickness. The tool with the Cr-CrN-(Cr0.35Ti0.40Al0.25)N coating showed the longest tool life at all the cutting speeds under consideration. Meanwhile, a tool with the coating under study can be recommended for use in turning constructional steel at the cutting speed of vc = 250 m·min−1. At this cutting speed, a tool shows the combination of a rather long tool life and balanced wear process, without any threat of catastrophic wear.


2002 ◽  
Vol 124 (4) ◽  
pp. 820-832 ◽  
Author(s):  
Jiancheng Liu ◽  
Kazuo Yamazaki ◽  
Hiroyuki Ueda ◽  
Norihiko Narutaki ◽  
Yasuo Yamane

In order to increase the accurate finishing productivity of pearlitic cast iron, face milling by CBN (Cubic Boron Nitride) cutting tools was studied. The main focus of the study is the machinability investigation of pearlitic cast iron with CBN cutting tools by studying the relationships among machining conditions such as feed rate, cutting speed as well as CBN cutting tool type, tool wear, workpiece surface quality, cutting forces, and cutting temperature. In addition, an emphasis is put on the effect of Al additive in pearlitic cast iron on its machinability and tool wear characteristics. High-speed milling experiments with CBN cutting tools were conducted on a vertical machining center under different machining conditions. The results obtained provide a useful understanding of milling performance by CBN cutting tools.


1990 ◽  
Vol 112 (2) ◽  
pp. 184-189 ◽  
Author(s):  
D. V. Hutton ◽  
Qinghuan Yu

Experimental evidence is presented which indicates that the presence of a built-up edge can significantly affect the generation of acoustic emission in metal cutting. Results for machining SAE 1018 and 4140 steels show that the built-up edge can mask the generally accepted AE-cutting speed relation when cutting tools having small rake angles are used. Under cutting conditions conducive to development of a built-up edge, it is shown that increased acoustic emission is generated as a result of increased effective rake angle and corresponding increase of shear angle in the primary deformation zone. Three distinct types of built-up edge have been observed and classified as immature, periodic, or developed, according to effect on acoustic emission.


2013 ◽  
Vol 465-466 ◽  
pp. 1114-1118
Author(s):  
Erween Abdul Rahim ◽  
Z.H. Samsudin ◽  
Muhammad Arif Abdul Rahim ◽  
Zazuli Mohid

Some machining process requires coolant to reduce the cutting temperature and helps to flush away the chips from the cutting zone. However, conventional flood coolant possesses some issues towards workers and the environment, regarding health and waste management. The implementation of Minimal Quantity Lubrication (MQL) as an alternative technique seems to be promising although the effectiveness of this technique were influenced by several factor. In turning process for instance, the distance of nozzle to the cutting zone contributes to the variation of machining performance. This study is to compare the effect on cutting performance between two internal MQL nozzle designs. The cutting tool holder were modified to have two internal MQL oil channel. The oil channel design were tested and the performance was evaluated in terms of cutting speed and cutting temperature for different cutting speed, feed rate and depth of cut. The result shows that the single channel performs better in terms of cutting force while dual channel significantly improve the cutting temperature.


2013 ◽  
Vol 589-590 ◽  
pp. 38-44
Author(s):  
Gang Liu ◽  
Ming Chen ◽  
Peng Nan Li ◽  
Qing Zhen Bi ◽  
Bao Cai Guo

The concept of multi-constrained analysis of the cutting process is presented for the first time in the paper. The paper adopts a method to solve an important problem which is how to judge the influence of constrains during the cutting process. The research results are applied for HSS drills for cutting stainless steel. On the basis of the multi-constrained analysis combined with methods of simulations and standard experiments, the optimum methods are provided for structure, coating and cutting parameters of cutting tools. For geometric structure of tools, optimization is to increase thickness of cutting and rake angle. Coating optimization strategy is choosing high temperature hardness and low thermal conductivity coating. Optimization of cutting parameter is to adjust feed fate, then select proper cutting speed. The conclusion of paper is helpful for the cutting optimization.


2014 ◽  
Vol 660 ◽  
pp. 18-22
Author(s):  
Mohamed Handawi ◽  
Amad Elddein Issa Elshwain ◽  
Mohd Yusof Noordin ◽  
Norizah Redzuan ◽  
Denni Kurniawan

Minimum quantity lubrication (MQL) or as it’s called semi dry cutting is a technique which spray a small value of lubricant flow rate to the cutting zone area. MQL has been used in many machining process with different cutting tools and workpiece materials due to its green environments and economically advantageous. MQL has become an attractive option to dry and flood cutting in terms of reduce the temperature in the cutting zone and reduce the cost of the product. However, in MQL seems to be machining limited by cutting temperature, because at high speed the effect of oil mist becomes evaporated. Therefore another alternative cooling approach was used with oil mist in this research. This research presents study the performance of nitrogen gas as a coolant and oil mist as lubricant in turning of hardened stainless tool steel (STAVAX ESR) with hardness 48 HRC. Using a gas as coolant with oil mist is a new solution for enhancing machinability. Turning experiments are carried out on CNC turning machine. The cutting insert grade is KC5010 (PVD-TiAlN wiper coated carbide). The experimental results were: 1) nitrogen gas with oil mist prolongs tool life compare with air with oil mist. 2) better product surface finish by using nitrogen gas with oil mist.


Author(s):  
Carlo Ferri ◽  
Timothy Minton ◽  
Saiful Bin Che Ghani ◽  
Kai Cheng

Whilst machining heat is generated by the friction inherent into the sliding of the chip on the rake face of the insert, the temperature in the cutting zone of both the insert and the chip rises, facilitating adhesion and diffusion. These effects accelerate the insert wear, ultimately undermining the tool life. Therefore, a number of methods have been developed to control the heat generation. Most typically, metal working fluids are conveyed onto the rake face in the cutting zone, with negative implications on the contamination of the part. Many applications for instance in health care and optics are often hindered by this contamination. In this study, microfluidics structures internal to the insert were examined as a means of controlling the heat generation. Conventional and internally cooled tools were compared in dry turning of AA6082-T6 aluminium alloy in two 33 factorial experiments of different machining conditions. Statistical analyses supported the conclusion that the chip temperature depends only on the depth of cut but not on the feed rate or on the cutting speed. They also showed that the benefit of cooling the insert internally increases while increasing the depth of cut. Internally cooled tools can therefore be particularly advantageous in roughing operations.


SINERGI ◽  
2020 ◽  
Vol 24 (3) ◽  
pp. 171
Author(s):  
Sobron Yamin Lubis ◽  
Sofyan Djamil ◽  
Yehezkiel Kurniawan Zebua

In the machining of metal cutting, cutting tools are the main things that must be considered. Using improper cutting parameters can cause damage to the cutting tool. The damage is Built-Up Edge (BUE). The situation is undesirable in the metal cutting process because it can interfere with machining, and the surface roughness value of the workpiece becomes higher. This study aimed to determine the effect of cutting speed on BUE that occurred and the cutting strength caused. Five cutting speed variants are used. Observation of the BUE process is done visually, whereas to determine the size of BUE using a digital microscope. If a cutting tool occurs BUE, then the cutting process is stopped, and measurements are made. This study uses variations in cutting speed consisting of cutting speed 141, 142, 148, 157, 163, and 169 m/min, and depth of cut 0.4 mm. From the results of the study were obtained that the biggest feeding force is at cutting speed 141 m/min at 347 N, and the largest cutting force value is 239 N with the dimension of BUE length: 1.56 mm, width: 1.35 mm, high: 0.56mm.


Sign in / Sign up

Export Citation Format

Share Document