Study of Micro-Upsetting by Finite Element Simulation Based on Crystal Plasticity and Grain Boundary Strengthening Theories

2021 ◽  
Vol 897 ◽  
pp. 21-28
Author(s):  
Jun Yuan Zheng ◽  
M.W. Fu

The properties of individual grains affect the mechanical behaviors and response of materials in micro-scaled deformation, viz., microforming, and there are unknown phenomena and deformation behaviors existing and limiting the wide application of microforming due to size effect. In this paper, a composite model combining crystal plasticity and grain boundary strengthening theories was developed for numerical investigation into the effect of grain boundaries on the plastic deformation of copper micro-upsetting. By comparing the results with and without grain-boundary structure, it is revealed that grain boundaries, which act as the barriers of crystal slip, result in the enhanced flow stress and the discontinuous distribution of stress and strain. The grain size effect is also considered in this research, and the results show the coarse-grained material reduces the flow stress and enhances the inhomogeneous deformation.

1995 ◽  
Vol 391 ◽  
Author(s):  
M. Hasunuma ◽  
H. Toyoda ◽  
T. Kawanoue ◽  
S. Ito ◽  
H. Kaneko ◽  
...  

AbstractIn order to clarify the relationship between Al line reliability and film microstructure, especially grain boundary structure and crystal texture, we have tested three kinds of highly textured Al lines, namely, single-crystal Al line, quasi-single-crystal Al line and hypertextured Al line, and two kinds of conventional Al lines deposited on TiN/Ti and on SiO2. Consequently, the empirical relation between the electromigration (EM) lifetime of Al line † and the (111) full width at half maximum (FWHM) value ω is described by † ∝ ω-2 [1]. This improvement of Al line reliability results from as following reasons; firstly, homogeneous microstructure and high activation energy of 1.28eV for the single-crystal Al line (ω=0.18°); secondly, sub-grain boundaries which consisted of dislocation arrays found in the quasi-single-crystal Al line (ω=0.26°) has turned out to be no more effective mass transport paths because dislocation lines are perpendicular to the direction of electron wind. Although there exist plural grain boundary diffusion paths in the newly developed hypertextured Al line (ω=0.5°) formed by using an amorphous Ta-Al underlayer {1], the vacancy flux along the line has been suppressed to the same order of magnitude of single crystal line. It has been clarified that the decrease of FWHM value has promoted the formation of sub-grain boundaries and low-angle boundaries with detailed orientation analysis of individual grains in the hypertextured film. The longer EM lifetime for the hypertextured Al line is considered to be due to the small grain boundary diffusivities for these stable grain boundaries, and this diffusivity reduction resulted in the suppression of void/hillock pair in the Al lines. These results have confirmed that controlling texture and/or grain boundary itself is a promising approach to develop reliable Al lines which withstand higher current densities required in future ULSIs.


1989 ◽  
Vol 153 ◽  
Author(s):  
G. J. Thomas ◽  
R. W. Siegel ◽  
J. A. Eastman

AbstractUsing high resolution electron microscopy, consolidated nanophase palladium samples were examined following electrolytic thinning after a hydriding - dehydriding cycle at 310 K. Due to the small size and random orientations of the individual grains, a large number of grain boundaries were available for examination. Some of these yielded adequate imaging conditions to allow observation of the lattice structure in the grain boundary regions. Image simulations were performed to determine the sensitivity of the technique to lattice disorder. The results of these studies suggest that grain boundary structures in nanophase palladium are similar to those in conventional coarse-grained polycrystals.


1997 ◽  
Vol 492 ◽  
Author(s):  
H. Van Swygenhoven ◽  
M. Spaczér ◽  
A. Caro

ABSTRACTMolecular dynamics computer simulations of high load plastic deformation at temperatures up to 500K of Ni nanophase samples with mean grain size of 5 nm are reported. Two types of samples are considered: a polycrystal nucleated from different seeds, each having random location and random orientation, representing a sample with mainly high angle grain boundaries, and polycrystals with seeds located at the same places as before, but with a limited missorientation representing samples with mainly low angle grain boundaries. The structure of the grain boundaries is studied by means of pair distribution functions, coordination number, atom energetics, and common neighbour analysis. Plastic behaviour is interpreted in terms of grain-boundary viscosity, controlled by a self diffusion mechanism at the disordered interface activated by thermal energy and stress.


2004 ◽  
Vol 10 (S02) ◽  
pp. 304-305 ◽  
Author(s):  
James P Buban ◽  
Katsuyuki Matsunaga ◽  
Takahisa Yamamoto ◽  
Yuichi Ikuhara

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


1991 ◽  
Vol 05 (19) ◽  
pp. 2989-3028 ◽  
Author(s):  
E.I. RABKIN ◽  
L.S. SHVINDLERMAN ◽  
B.B. STRAUMAL

Recent theories of grain boundary structure have been reviewed briefly. The possibility of existence of the same variety of phase transitions on grain boundaries as that on the crystal external surface has been demonstrated. Recent experimental data and theoretical models concerning grain boundary phase transitions are critically analysed. Grain boundary phase transitions connected with the formation of thin disordered layers on the boundary (prewetting, premelting) are particularly distinguished. Results of recent indirect experiments, which may be treated in terms of prewetting and premelting, have been reviewed. Experimentally observed critical phenomena in the vicinity of the prewetting transition on the tin-germanium interphase boundary have been discussed in terms of the critical exponents theory. Some ideas regarding directions of further research are presented.


2010 ◽  
Vol 654-656 ◽  
pp. 1283-1286 ◽  
Author(s):  
Tetsuya Ohashi ◽  
Michihiro Sato ◽  
Yuhki Shimazu

Plastic slip deformations of tricrystals with simplified geometries are numerically analyzed by a FEA-based crystal plasticity code. Accumulation of geometrically necessary (GN) dislocations, distributions of the total slip, plastic work density and GN dislocations on slip systems, as well as some indices for the intensity of slip multiplication are evaluated. Results show that coexistence of GN dislocations on different slip systems is prominent at triple junctions of grain boundaries.


1990 ◽  
Vol 5 (5) ◽  
pp. 919-928 ◽  
Author(s):  
S. E. Babcock ◽  
D. C. Larbalestier

Regular networks of localized grain boundary dislocations (GBDs) have been imaged by means of transmission electron microscopy in three different types of high-angle grain boundaries in YBa2Cu3O7-δ, implying that these boundaries possess ordered structures upon which a significant periodic strain field is superimposed. The occurrence of these GBD networks is shown to be consistent with the GBD/Structural Unit and Coincidence Site Lattice (CSL)/Near CSL descriptions for grain boundary structure. Thus, these dislocations appear to be intrinsic features of the boundary structure. The spacing of the observed GBDs ranged from ∼10 nm to ∼100 nm. These GBDs make the grain boundaries heterogeneous on a scale that approaches the coherence length and may contribute to their weak-link character by producing the “superconducting micro-bridge” microstructure which has been suggested on the basis of detailed electromagnetic measurements on similar samples.


2007 ◽  
Vol 121-123 ◽  
pp. 1241-1244 ◽  
Author(s):  
Dong Seok Seo ◽  
Hwan Kim ◽  
Jong Kook Lee

In this study, it was demonstrated how second phases with small amount, which are hardly detected by XRD analysis, affect grain boundary dissolution and related mechanical properties of HA. All HA disks sintered at 1200 oC for 2 h in air with under moisture protection were phase pure and had Ca/P molar ratio of 1.67. Following certain period of exposure to the distilled water, the surface dissolution initiated at grain boundaries and particle loosening, subsequently resulting in decrease in mechanical properties of HA. In order to understand the dissolution mechanism, grain boundary structure of HA was identified by transmission electron microscopy (TEM) and high resolution TEM observation. From the analysis, it was found that the non-stoichiometric phase as α-tricalcium phosphate (TCP) transformed from β-TCP was existed at grain boundaries and caused surface dissolution of HA. From the XRD analysis, it was found that (211) and (112) planes of hydroxyapatite were susceptible to dissolution, whereas (300) plane was relatively stable.


Author(s):  
I. Simonovski ◽  
L. Cizelj

In recent years we have seen a development of novel experimental techniques that enable one to non-destructively characterize polycrystalline microstructures. These techniques hold significant advantages over approaches like serial sectioning since the specimen is not destroyed in the characterization process. This is of immense value in advancing our understanding of materials and multiscale computational models. In particular, processes at the small length scales like the initiation and early development of grain boundary damage can now be measured more closely while the resulting simulations can now be directly compared to the experimental data. The task is, however, far from being simple as extremely complex geometry needs to be coupled with advance constitutive models for the bulk grain material and the grain boundaries themselves need to be combined. In this work a model, based on a X-ray diffraction contrast tomography data of a stainless steel wire with a diameter of 0.4 mm is presented. 3D topology and crystallographic orientation of individual grains are directly transferred into a finite element model. Grain boundary damage initialization and early development is then explored for a number of cases, ranging from isotropic elasticity up to crystal plasticity constitutive laws for the bulk grain material. In all cases the grain boundaries are modeled using the cohesive zone approach. Also, the stability of the simulations and measures aimed at improving it are reported upon.


Sign in / Sign up

Export Citation Format

Share Document