Electrical Breakdown Voltage of Palm Oil and Nano Graphene Filler in Nanofluids Application on Transformer Insulating Oil

2021 ◽  
Vol 902 ◽  
pp. 59-63
Author(s):  
Kanin Wajanasoonthon ◽  
Amnart Suksri

Generally, power transformers have been using mineral oil as a liquid insulator due to its availability and excellent dielectric property. However, petroleum sources are depleting, which implies that mineral oil is going to be limited in availability. So, this research is to investigate on vegetable oil with nanographene filler as a substitution. Vegetable insulating oil is considered as environment-friendly insulating oil due to their superiority of biodegradable, nature-friendly, high fire-point, and good level of breakdown voltage (BV). Nevertheless, vegetable insulating oil have high viscosity, leading to a slow flow rate on the cooling performance of power transformers. To solve this problem, a process of transesterification was used to produce palm oil methyl ester (POME) from a refined bleached deodorized palm olein (RBDPO) to reduce its viscosity. RBDPO and POME were used as two kinds of fluid-based to combine with graphene nanoparticles (GNPs). Electrical breakdown voltage tests were performed by the IEC60156 standard. The results shown that POME have higher BV than RBDPO but adding GNPs may lead to lower BV even with a small amount of concentration. Nevertheless, every nanofluid has a higher BV than 30 kV.

2013 ◽  
Vol 64 (4) ◽  
Author(s):  
Nazera Ismail ◽  
Yanuar Z. Arief ◽  
Zuraimy Adzis ◽  
Shakira A. Azli ◽  
Abdul Azim A. Jamil ◽  
...  

This paper describes the properties of refined, bleached, deodorized palm oil (RBDPO) as having the potential to be used as insulating liquid. There are several important properties such as electrical breakdown, dielectric dissipation factor, specific gravity, flash point, viscosity and pour point of RBDPO that was measured and compared to commercial mineral oil which is largely in current use as insulating liquid in power transformers. Experimental results of the electrical properties revealed that the average breakdown voltage of the RBDPO sample, without the addition of water at room temperature, is 13.368 kV. The result also revealed that due to effect of water, the breakdown voltage is lower than that of commercial mineral oil (Hyrax). However, the flash point and the pour point of RBDPO is very high compared to mineral oil thus giving it advantageous possibility to be used safely as insulating liquid. The results showed that RBDPO is greatly influenced by water, causing the breakdown voltage to decrease and the dissipation factor to increase; this is attributable to the high amounts of dissolved water.


2021 ◽  
Vol 10 (6) ◽  
pp. 2989-2996
Author(s):  
Sharin Ab Ghani ◽  
Mohd Shahril Ahmad Khiar ◽  
Imran Sutan Chairul ◽  
Muhammad Imran Zamir

Transformer insulating oils are exposed to repeated electrical discharge or breakdowns inside power transformers. Durability tests are conducted to analyze the ability of oil to resist decomposition due to such high electrical stresses. With the increasing demand for alternative insulating oils for oil-immersed transformers, it is worthy to compare the performance of different types of insulating oils (conventional mineral-based insulating oil and natural ester-based insulating oil) under repeated electrical breakdown. In this paper, the AC breakdown voltage of different mineral-based and natural ester-based insulating oils is reported. Durability tests were conducted based on the AC breakdown voltage behavior of insulating oils after 50 electrical breakdown shots. The AC breakdown voltage of each insulating oil sample was assessed according to the ASTM D1816 standard test method. Based on the results, it can be concluded that the dissimilarity in chemical composition of the insulating oils has a significant effect on the AC breakdown voltage behavior of these oils under repeated electrical breakdowns.


2013 ◽  
Vol 64 (4) ◽  
Author(s):  
Yusnida M. ◽  
Kiasatina Azmi ◽  
Mohd Azmier Ahmad ◽  
Zulkifli Ahmad ◽  
Mohamad Kamarol

Mineral oil (MO) works as an important electrical insulation and coolant in transformer which is non-biodegradable and nearly running out. Therefore, for sustainable and environmental concern, an alternative biodegradable insulating oil that potential to replace the mineral oil is introduced. In view of that, the breakdown strength characteristic of Refined Bleached Deodorized Palm Oil (RBDPO) and MO mixtures were investigated by varying the mixing percentage of RBDPO from 0% to 100% at 40oC. The results showed that the breakdown strength of the oil mixture abruptly decline to the minimum breakdown voltage of 50 kV at  20% of  RBDPO mixture and gradually increased when  the ratio of the RBDPO is added. The highest breakdown strength is achieved 87kv at 80% of RBDPO content. The result of kinematic viscosity is also presented.


Jurnal METTEK ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Dedison Gasni ◽  
KM Abdul Razak ◽  
Ahmad Ridwan ◽  
Muhammad Arif

Penelitian ini bertujuan untuk mengetahui efek dari penambahan minyak kelapa dan sawit terhadap sifat fisik dan tribologi pelumas SAE 40. Vegetabel oil, seperti; minyak kelapa dan sawit, memiliki nilai viskositas indek yang tinggi dan sifat pelumasan yang baik terutama didaerah boundary lubrication jika dibandingkan dengan mineral oil (SAE 40). Hal ini disebabkan karena vegetabel oil memiliki kandungan fatty acids yang tidak dimiliki oleh mineral oil. Keunggulan lain dari minyak kelapa dan sawit adanya sifat yang ramah lingkungan karena mudah terurai di alam dan dapat diperbaharui. Pada penelitian ini sifat yang baik dari minyak kelapa dan sawit ini akan dimanfaatkan sebagai zat aditif pada minyak pelumas SAE 40. Pengujian dilakukan terhadap sifat fisik dan tribology dengan penambahan 5%, 10%, 15%, dan 20% berat dari minyak kelapa dan sawit ke dalam minyak pelumas SAE 40. Pengujian sifat fisik terdiri dari pengukuran viskositas pada temperatur 400C dan 1000C dan viskositas index. Pengujian sifat tribologi untuk menentukan keausan dan koefisien gesek berdasarkan ASTM G99 dengan menggunakan alat uji pin on disk. Dari hasil pengujian diperoleh bahwa dengan penambahan minyak kelapa dan sawit kedalam minyak pelumas SAE 40 terjadi peningkatan viskositas indeks. Peningkatan viskositas indeks sebanyak  17% dengan penambahan 20% minyak sawit. Terjadi perubahan sifat tribologi dengan penambahan minyak sawit, berupa penurunan keausan dan nilai koefisien gesek dibandingkan dengan penambahan minyak kelapa. This study aims to determine the effect of coconut and palm oils as additives to physical and tribological properties of SAE 40 lubricating oil . Vegetable oils, such as; coconut oil and palm oil, have high viscosity index and good lubrication properties, especially in boundary lubrication compared to mineral oil. This is due to vegetable oil having fatty acids that are not owned by mineral oil. The advantages of coconut oil and palm oil are environmentally friendly properties because they are biodegradable and renewable. In this study, the good properties of coconut and palm oils will be used as additives in SAE 40 lubricating oil. Tests are carried out on the physical and tribological properties with the addition of 5%, 10%, 15%, and 20% by weight of coconut and palm oils into SAE 40 lubricating oil. Physical properties testing consists of measuring viscosity at temperatures of 400C and 1000C and viscosity index. The tribological test is to determine wear and coefficient of friction based on ASTM G99 using a pin on disc test equipment. From the test results,  it was found that coconut and palm oils as additives into SAE 40 lubricating oil could increase in viscosity index. The increase of  the viscosity index was 17% by adding 20% of palm oil. There was a change of tribological properties in the form of decreasing on the wear and the coefficient of friction with the addition of palm oil compare to addition of coconut oil.


2021 ◽  
Vol 14 (2) ◽  
pp. 132-141
Author(s):  
M. N. Lyutikova ◽  
S. M. Korobeynikov ◽  
A. A. Konovalov

Power transformers are key equipment in power generation, transmission, and distribution systems. The reliability of power transformers is based on the performance of the insulation system, which includes solid cellulose insulation and a liquid dielectric. Modern power engineering requires liquid insulation to have excellent insulating properties, high fire resistance, and biodegradability. Mineral oil that has been in use for over 100 years does not meet certain requirements. Therefore, various methods of enhancing the insulating properties of the oil are currently being considered, including mixing it with other liquid dielectrics, which have excellent properties. Synthetic and natural esters are considered as alternative fluids.This article discusses the possibility of enhancing the insulating characteristics of mineral oil with a high content of aromatic hydrocarbons (for example, T-750 oil) by mixing it with synthetic ester Midel 7131. Assessment is given of insulating parameters of the resulting mixtures with an ester fraction in mineral oil from 0% to fifty%. The main characteristics of the mixtures are described, such as density, kinematic viscosity, flash point, dielectric loss tangent, relative dielectric permittivity, breakdown voltage, and moisture content. It is shown that with an increase in the proportion of ester, some parameters of the obtained insulating liquid improve (flash point, dielectric constant, breakdown voltage), while values of other parameters (density, kinematic viscosity, dielectric loss tangent) with an ester content of more than 10% in the mixture do not meet the requirements for mineral oils.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 716
Author(s):  
Bin Du ◽  
Yu Shi ◽  
Qian Liu

Insulating oil modified by nanoparticle (often called nanofluids) has recently drawn considerable attention, especially concerning the improvement of electrical breakdown and thermal conductivity of the nanofluids. However, traditional insulating nanofluid often tends to high dielectric loss, which accelerates the ageing of nanofluids and limits its application in electrical equipment. In this paper, three core-shell Fe3O4@SiO2 nanoparticles with different SiO2 shell thickness were prepared and subsequently dispersed into insulating oil to achieve nanofluids. The dispersion stability, breakdown voltages and dielectric properties of these nanofluids were comparatively investigated. Experimental results show the alternating current (AC) and positive lightning breakdown voltage of nanofluids increased by 30.5% and 61%, respectively. Moreover, the SiO2 shell thickness of Fe3O4@SiO2 nanoparticle had significant effects on the dielectric loss of nanofluids.


Author(s):  
Muhammad Bin Yahya ◽  
Fatin Amirah Binti Amirrazli

<p>This paper investigates the suitability of vegetable oils to replace mineral oil based on its AC breakdown voltage, partial discharge and viscosity. The purpose of the study is to analyze the effect of the nanofluids containing SiO<sub>2</sub> nanoparticle in vegetables oils; namely, Coconut oil and Palm oil. A nanofluid is a fluid containing nanoparticles. However, the precise effects on the electrical properties is still uncertain. For decades, transformers use petroleum-based mineral oil because of its good dielectric properties and cooling capability. Coconut oil (CO) and Palm oil (PO) are thought to be   suitable alternatives to replace mineral oil as transformer oil as they are sustainable and available in plenty as natural resources.  It was obtained in this study that the breakdown voltages of these raw oils have fulfilled the standard specifications of good insulating liquid. However, the addition of SiO<sub>2</sub> did not improve the AC breakdown voltage and viscosity of coconut oil and palm oil at different temperatures. However, the addition of SiO<sub>2</sub> gave positive results in the values of partial discharges in which the presence of the nanoparticles has greatly reduced the mean volume of partial discharges for both coconut oil and palm oil.</p>


2015 ◽  
Vol 785 ◽  
pp. 320-324 ◽  
Author(s):  
Nurul Izzatul Akma Katim ◽  
Mohd Taufiq Ishak ◽  
A.M. Ishak ◽  
M.Z.A.A. Kadir

The properties of Palm Oil (PO) and Coconut Oil (CO) offer the potential for transformers with non-toxicity, high fire and flash points and better environmental compatibility while compared with those filled with Mineral Oil (MO). This potential has led to intensive studies of electrical performance of biodegradable oil especially in evaluating the electrical performance under lightning impulse voltage in recent years. This paper presents the investigation on the impulse breakdown voltage of PO and CO in such a uniform field. The PO used in this study is Refined, Bleached and Deodorized Palm Oil (RBDPO) Olein type. Two testing methods, rising-voltage and up-and-down are considered for both oils with different gap distances (2.0 mm and 3.8 mm). Testing methods including rising-voltage method and up-and-down method have no notable influence on the breakdown voltages of RBDPOs and CO compared to MO.


2015 ◽  
Vol 785 ◽  
pp. 315-319 ◽  
Author(s):  
Siti Mariam Yusof ◽  
Nuriziani Hussin ◽  
Muzamir Isa

Insulation is one of the most important parts in the power transformer. Palm oil impregnated paper is investigated to replace the mineral oil impregnated paper due to the high viscosity of palm oil compared to the viscosity of the mineral oil. This paper discussed on ultrasonic radiation technique that was used to reduce the viscosity of the vegetable oil (palm oil) for transformer insulation application. The ultrasonic equipment produces 500W heating power, 240W ultrasonic power at a fixed frequency of 40 kHz. Ultrasonic radiation was applied on oil samples at 30 °C, 50 °C and 75 °C by using the sonicator water bath for several periods of time. The results show up to 42.6 % reduction from the original viscosity of palm oil and proved to have a long term effect on the viscosity of palm oil. The cavitation bubbles that occur in the sample during radiation is one of the mechanism in viscosity reduction.


Sign in / Sign up

Export Citation Format

Share Document